The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

abglasso: Adaptive Bayesian Graphical Lasso

Implements a Bayesian adaptive graphical lasso data-augmented block Gibbs sampler. The sampler simulates the posterior distribution of precision matrices of a Gaussian Graphical Model. This sampler was adapted from the original MATLAB routine proposed in Wang (2012) <doi:10.1214/12-BA729>.

Version: 0.1.1
Imports: MASS, pracma, stats, statmod
Suggests: testthat
Published: 2021-07-13
DOI: 10.32614/CRAN.package.abglasso
Author: Jarod Smith ORCID iD [aut, cre], Mohammad Arashi ORCID iD [aut], Andriette Bekker ORCID iD [aut]
Maintainer: Jarod Smith <jarodsmith706 at gmail.com>
License: GPL-3
NeedsCompilation: no
Materials: README NEWS
In views: Bayesian
CRAN checks: abglasso results

Documentation:

Reference manual: abglasso.pdf

Downloads:

Package source: abglasso_0.1.1.tar.gz
Windows binaries: r-devel: abglasso_0.1.1.zip, r-release: abglasso_0.1.1.zip, r-oldrel: abglasso_0.1.1.zip
macOS binaries: r-release (arm64): abglasso_0.1.1.tgz, r-oldrel (arm64): abglasso_0.1.1.tgz, r-release (x86_64): abglasso_0.1.1.tgz, r-oldrel (x86_64): abglasso_0.1.1.tgz
Old sources: abglasso archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=abglasso to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.