The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

entropy_kde2d()

Introduction

The entropy_kde2d() function estimates the Shannon entropy for a two-dimensional dataset using kernel density estimation (KDE). This function provides a non-parametric measure of entropy, useful for analyzing the uncertainty or randomness in bivariate distributions, such as spatial data of animal trajectories (e.g, Maei et al., 2009).

The parameters for entropy_kde2d() are as follows:

The function outputs a single numeric value representing the entropy of the given data.

Example

set.seed(123)
# Generate a 2D normal distribution with a correlation of 0.6
n <- 1000
mean <- c(0, 0)
sd_x <- 1
sd_y <- 5
correlation <- 0.6
sigma <- matrix(
  c(
    sd_x^2,
    correlation * sd_x * sd_y,
    correlation * sd_x * sd_y,
    sd_y^2
  ),
  ncol = 2
)
library(MASS)
simulated_data <- mvrnorm(n, mu = mean, Sigma = sigma)
x <- simulated_data[, 1]
y <- simulated_data[, 2]
# Plot the data
plot(simulated_data)

# Compute entropy using normal entropy formula
cov_matr <- cov(cbind(x, y))
sigmas <- diag(cov_matr)
det_sig <- prod(sigmas)

normal_entropy is a function that computes the entropy of a bivariate normal distribution given the number of dimensions k, the value of \(\pi\), and the determinant of the covariance matrix det_sig. This is used, for example, in Maei et al. (2009) to compute the entropy of mice trajectories in a Morris water maze.

normal_entropy <- function(k, pi, det_sig) {
  (k / 2) * (1 + log(2 * pi)) + (1 / 2) * log(det_sig)
}

entropia <- normal_entropy(k = 2, pi = pi, det_sig)
print(entropia) # Expected value close to 4.3997
## [1] 4.399979
# Compute entropy using entropy_kde2d
result <- entropy_kde2d(x, y, n_grid = 50)
print(result) # Expected value close to 4.2177
## [1] 4.217723

References

Maei, H. R., Zaslavsky, K., Wang, A. H., Yiu, A. P., Teixeira, C. M., Josselyn, S. A., & Frankland, P. W. (2009). Development and validation of a sensitive entropy-based measure for the water maze. Frontiers in Integrative Neuroscience, 3, 870.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.