The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This vignette produces the graphs included in the initial MBR manuscript.
Figure 1: Raw monthly birth rates (General Fertility Rates; GFRs) for Oklahoma County, 1990-1999, plotted in a linear plot; the “bombing effect” is located ten months after the Oklahoma City bombing.
Smoothed monthly birth rates (General Fertility Rates; GFRs) for Oklahoma County, 1990-1999, plotted in a linear plot. The top plot shows the connected raw data with a February smoother; the middle plot shows smoothing with a 12-month moving average, blue/green line, superimposed on a February smoother, red line); the bottom plot shows the smoothers and confidence bands, which are H-spreads defined using the distribution of GFRs for the given month and 11 previous months.
First, some R packages are loaded, and some variables and functions are defined.
<- base::as.Date("1996-02-15") #as.Date("1995-04-19") + lubridate::weeks(39) = "1996-01-17"
change_month set.seed(444) # So bootstrap won't trigger a git diff
<- function(x, y) {
vp_layout ::viewport(layout.pos.row = x, layout.pos.col = y)
grid
}<- function(scores) {
full_spread ::range(scores) # A new function isn't necessary. It's defined in order to be consistent.
base
}<- function(scores) {
h_spread ::quantile(x = scores, probs = c(.25, .75))
stats
}<- function(scores) {
se_spread ::mean(scores) + base::c(-1, 1) * stats::sd(scores) / base::sqrt(base::sum(!base::is.na(scores)))
base
}<- function(scores, conf = .68) {
boot_spread <- function(d, i) {
plugin ::mean(d[i])
base
}
<- boot::boot(data = scores, plugin, R = 99) # 999 for the publication
distribution <- boot::boot.ci(distribution, type = c("bca"), conf = conf)
ci $bca[4:5] # The fourth & fifth elements correspond to the lower & upper bound.
ci
}
<- ggplot2::theme(
dark_theme axis.title = ggplot2::element_text(color = "gray30", size = 9),
axis.text.x = ggplot2::element_text(color = "gray30", hjust = 0),
axis.text.y = ggplot2::element_text(color = "gray30"),
axis.ticks = ggplot2::element_blank(),
# panel.grid.minor.y = element_line(color = "gray95", linewidth = .1),
# panel.grid.major = element_line(color = "gray90", linewidth = .1),
panel.spacing = grid::unit(c(0, 0, 0, 0), "cm"),
plot.margin = grid::unit(c(0, 0, 0, 0), "cm")
)# qplot(mtcars$hp) + dark_theme
<-
light_theme +
dark_theme ::theme(
ggplot2axis.title = ggplot2::element_text(color = "gray80", size = 9),
axis.text.x = ggplot2::element_text(color = "gray80", hjust = 0),
axis.text.y = ggplot2::element_text(color = "gray80"),
panel.grid.minor.y = ggplot2::element_line(color = "gray99", linewidth = .1),
panel.grid.major = ggplot2::element_line(color = "gray95", linewidth = .1)
)<-
date_sequence ::seq.Date(
basefrom = base::as.Date("1990-01-01"),
to = base::as.Date("1999-01-01"),
by = "years"
)<-
x_scale ::scale_x_date(
ggplot2breaks = date_sequence,
labels = scales::date_format("%Y")
)# This keeps things proportional down the three frames.
<-
x_scale_blank ::scale_x_date(
ggplot2breaks = date_sequence,
labels = NULL
)
Here is the basic linear rolling graph. It doesn’t require much specification, and will work with a wide range of appropriate datasets. This first (unpublished) graph displays all components.
# Uncomment the next two lines to use the version built into the package. By default, it uses the
# CSV to promote reproducible research, since the CSV format is more open and accessible to more software.
<-
ds_linear_all |>
county_month_birth_rate_2005_version ::as_tibble()
tibble
<-
ds_linear_okc |>
ds_linear_all ::filter(county_name == "oklahoma") |>
dplyraugment_year_data_with_month_resolution(date_name = "date")
<-
portfolio_cartesian annotate_data(
ds_linear_okc,dv_name = "birth_rate",
center_function = stats::median,
spread_function = h_spread
)
cartesian_rolling(
ds_linear = portfolio_cartesian$ds_linear,
x_name = "date",
y_name = "birth_rate",
stage_id_name = "stage_id",
change_points = change_month,
change_point_labels = "Bombing Effect"
)
The version for the manuscript was tweaked to take advantage of certain features of the dataset. This is what it looks like when all three stylized panels are combined.
<-
top_panel ::cartesian_rolling(
Watsds_linear = portfolio_cartesian$ds_linear,
x_name = "date",
y_name = "birth_rate",
stage_id_name = "stage_id",
change_points = change_month,
y_title = "General Fertility Rate",
change_point_labels = "Bombing Effect",
draw_rolling_band = FALSE,
draw_rolling_line = FALSE
)
<-
middle_panel ::cartesian_rolling(
Watsds_linear = portfolio_cartesian$ds_linear,
x_name = "date",
y_name = "birth_rate",
stage_id_name = "stage_id",
change_points = change_month,
y_title = "General Fertility Rate",
change_point_labels = "",
draw_rolling_band = FALSE,
draw_jagged_line = FALSE
)
<-
bottom_panel ::cartesian_rolling(
Watsds_linear = portfolio_cartesian$ds_linear,
x_name = "date",
y_name = "birth_rate",
stage_id_name = "stage_id",
change_points = change_month,
y_title = "General Fertility Rate",
change_point_labels = "",
# draw_rolling_band = FALSE,
draw_jagged_line = FALSE
)
<- top_panel + x_scale + dark_theme
top_panel <- middle_panel + x_scale + dark_theme
middle_panel <- bottom_panel + x_scale_blank + dark_theme
bottom_panel
::grid.newpage()
grid::pushViewport(grid::viewport(layout = grid::grid.layout(3,1)))
gridprint(top_panel , vp = vp_layout(1, 1))
print(middle_panel, vp = vp_layout(2, 1))
print(bottom_panel, vp = vp_layout(3, 1))
::popViewport() grid
Cartesian plot of the GFR time series data in Oklahoma County, with H-spread Bands superimposed.
<-
cartesian_periodic ::cartesian_periodic(
Wats$ds_linear,
portfolio_cartesian$ds_periodic,
portfolio_cartesianx_name = "date",
y_name = "birth_rate",
stage_id_name = "stage_id",
change_points = change_month,
change_point_labels = "Bombing Effect",
y_title = "General Fertility Rate",
draw_periodic_band = TRUE #The only difference from the simple linear graph above
)print(cartesian_periodic)
<- cartesian_periodic + x_scale + dark_theme
cartesian_periodic print(cartesian_periodic)
Wrap Around Time Series (WATS Plot) of the Oklahoma City GFR data, 1990-1999.
<-
portfolio_polar polarize_cartesian(
ds_linear = portfolio_cartesian$ds_linear,
ds_stage_cycle = portfolio_cartesian$ds_stage_cycle,
y_name = "birth_rate",
stage_id_name = "stage_id",
plotted_point_count_per_cycle = 7200
)
::grid.newpage()
gridpolar_periodic(
ds_linear = portfolio_polar$ds_observed_polar,
ds_stage_cycle = portfolio_polar$ds_stage_cycle_polar,
y_name = "radius",
stage_id_name = "stage_id",
draw_periodic_band = FALSE,
draw_stage_labels = TRUE,
draw_radius_labels = TRUE,
cardinal_labels = c("Jan1", "Apr1", "July1", "Oct1")
)
Wrap Around Time Series (WATS Plot) of the Oklahoma City GFR data, 1990-1999.
<-
portfolio_polar ::polarize_cartesian(
Watsds_linear = portfolio_cartesian$ds_linear,
ds_stage_cycle = portfolio_cartesian$ds_stage_cycle,
y_name = "birth_rate",
stage_id_name = "stage_id",
plotted_point_count_per_cycle = 7200
)
::grid.newpage()
grid::pushViewport(grid::viewport(
gridlayout = grid::grid.layout(
nrow = 2,
ncol = 2,
respect = TRUE,
widths = grid::unit(c(1, 1), c("null", "null")),
heights = grid::unit(c(1, .5), c("null", "null"))
),gp = grid::gpar(cex = 1, fill = NA)
))
## Create top left panel
::pushViewport(grid::viewport(layout.pos.col = 1, layout.pos.row = 1))
grid<-
top_left_panel ::polar_periodic(
Watsds_linear = portfolio_polar$ds_observed_polar,
ds_stage_cycle_polar = portfolio_polar$ds_stage_cycle_polar,
y_name = "radius",
stage_id_name = "stage_id", #graph_ceiling = 7,
cardinal_labels = c("Jan1", "Apr1", "July1", "Oct1")
)::upViewport()
grid
## Create top right panel
::pushViewport(grid::viewport(layout.pos.col = 2, layout.pos.row = 1))
grid<-
top_right_panel ::polar_periodic(
Watsds_linear = portfolio_polar$ds_observed_polar,
ds_stage_cycle_polar = portfolio_polar$ds_stage_cycle_polar,
y_name = "radius",
stage_id_name = "stage_id", #graph_ceiling = 7,
draw_observed_line = FALSE,
cardinal_labels = c("Jan1", "Apr1", "July1", "Oct1"),
origin_label = NULL
)::upViewport()
grid
## Create bottom panel
::pushViewport(grid::viewport(layout.pos.col = 1:2, layout.pos.row = 2, gp = grid::gpar(cex = 1)))
gridprint(cartesian_periodic, vp = vp_layout(x = 1:2, y = 2)) # Print across both columns of the bottom row.
::upViewport() grid
This figure compares Oklahoma County against the (other) largest urban counties.
# ds_linear_all <- Wats::augment_year_data_with_month_resolution(ds_linear = county_month_birth_rate_2005_version, date_name="date")
# Identify the average size of the fecund population
|>
ds_linear_all ::group_by(county_name) |>
dplyr::summarize(
dplyrMean = base::mean(fecund_population)
|>
) ::ungroup() dplyr
# A tibble: 12 × 2
county_name Mean
<chr> <dbl>
1 canadian 18332.
2 cleveland 48865.
3 comanche 26268.
4 creek 13402.
5 logan 7065.
6 mcclain 5434.
7 oklahoma 146882.
8 osage 8529.
9 pottawatomie 13604.
10 rogers 13383.
11 tulsa 123783.
12 wagoner 11580.
<- function(
graph_row_comparison row_label = "",
.county_name = "oklahoma",
spread_function = h_spread,
change_month = as.Date("1996-02-15")
) {<-
ds_linear |>
ds_linear_all ::filter(county_name == .county_name) |>
dplyr::augment_year_data_with_month_resolution(date_name = "date")
Wats
<-
portfolio_cartesian |>
ds_linear ::annotate_data(
Watsdv_name = "birth_rate",
center_function = stats::median,
spread_function = spread_function
)
<-
portfolio_polar $ds_linear |>
portfolio_cartesian::polarize_cartesian(
Watsds_stage_cycle = portfolio_cartesian$ds_stage_cycle,
y_name = "birth_rate",
stage_id_name = "stage_id",
plotted_point_count_per_cycle = 7200
)
<-
cartesian_periodic $ds_linear |>
portfolio_cartesian::cartesian_periodic(
Wats$ds_periodic,
portfolio_cartesianx_name = "date",
y_name = "birth_rate",
stage_id_name = "stage_id",
change_points = change_month,
change_point_labels = ""
)
::pushViewport(grid::viewport(
gridlayout =
::grid.layout(
gridnrow = 1,
ncol = 3,
respect = FALSE,
widths = grid::unit(c(1.5, 1, 3), c("line", "null", "null"))
),gp = grid::gpar(cex = 1, fill = NA)
))
::pushViewport(grid::viewport(layout.pos.col = 1))
grid::grid.rect(gp = grid::gpar(fill = "gray90", col = NA))
grid::grid.text(row_label, rot = 90)
grid::popViewport()
grid
::pushViewport(grid::viewport(layout.pos.col = 2))
grid::polar_periodic(
Watsds_linear = portfolio_polar$ds_observed_polar,
ds_stage_cycle_polar = portfolio_polar$ds_stage_cycle_polar,
draw_observed_line = FALSE,
y_name = "radius",
stage_id_name = "stage_id",
origin_label = NULL,
plot_margins = c(0, 0, 0, 0)
)::popViewport()
grid
::pushViewport(grid::viewport(layout.pos.col = 3))
gridprint(cartesian_periodic + x_scale + light_theme, vp = vp_layout(x = 1, y = 1))
::popViewport()
grid::popViewport() #Finish the row
grid
}
<- c("Comanche", "Cleveland", "Oklahoma", "Tulsa", "Rogers")
county_names <- tolower(county_names)
counties
::grid.newpage()
grid::pushViewport(grid::viewport(
gridlayout = grid::grid.layout(nrow = length(counties), ncol = 1),
gp = grid::gpar(cex = 1, fill = NA)
))
for (i in base::seq_along(counties)) {
::pushViewport(grid::viewport(layout.pos.row = i))
gridgraph_row_comparison(.county_name = counties[i], row_label = county_names[i])
::popViewport()
grid
}::popViewport() grid
Here are all 12 counties that Ronnie collected birth records for. This extended graph is not in the manuscript.
<- base::sort(base::unique(ds_linear_all$county_name))
counties <- c("Canadian", "Cleveland", "Comanche", "Creek", "Logan", "McClain", "Oklahoma", "Osage", "Pottawatomie", "Rogers", "Tulsa", "Wagoner")
county_names
::grid.newpage()
grid::pushViewport(grid::viewport(
gridlayout = grid::grid.layout(nrow = base::length(counties), ncol = 1),
gp = grid::gpar(cex = 1, fill = NA)
))
for (i in base::seq_along(counties)) {
::pushViewport(grid::viewport(layout.pos.row = i))
gridgraph_row_comparison(.county_name = counties[i], row_label = county_names[i])
::popViewport()
grid
}::popViewport() grid
This figure demonstrates that WATS accommodates many types of error bands.
<- c("h_spread", "full_spread", "se_spread", "boot_spread")
spreads <- c("H-Spread", "Range", "+/-1 SE", "Bootstrap")
spread_names ::grid.newpage()
grid::pushViewport(grid::viewport(
gridlayout = grid::grid.layout(nrow = base::length(spreads), ncol = 1),
gp = grid::gpar(cex = 1, fill = NA)
))for (i in base::seq_along(spreads)) {
::pushViewport(grid::viewport(layout.pos.row = i))
gridgraph_row_comparison(spread_function = base::get(spreads[i]), row_label = spread_names[i])
::upViewport()
grid
}::upViewport() grid
The current vignette was build on a system using the following software.
Report created by wibeasley at Fri 10 Mar 2023 08:43:44 AM CST, -0600
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.10
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.1
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] Wats_1.0.1
loaded via a namespace (and not attached):
[1] highr_0.10 RColorBrewer_1.1-3 pillar_1.8.1 bslib_0.4.2
[5] compiler_4.2.2 jquerylib_0.1.4 tools_4.2.2 boot_1.3-28.1
[9] digest_0.6.31 lattice_0.20-45 jsonlite_1.8.4 lubridate_1.9.2
[13] evaluate_0.20 lifecycle_1.0.3 tibble_3.2.0 gtable_0.3.1
[17] timechange_0.2.0 pkgconfig_2.0.3 rlang_1.0.6 cli_3.6.0
[21] rstudioapi_0.14 yaml_2.3.7 xfun_0.37 fastmap_1.1.1
[25] withr_2.5.0 dplyr_1.1.0 knitr_1.42 generics_0.1.3
[29] vctrs_0.5.2 sass_0.4.5 grid_4.2.2 tidyselect_1.2.0
[33] glue_1.6.2 R6_2.5.1 fansi_1.0.4 rmarkdown_2.20
[37] farver_2.1.1 ggplot2_3.4.1 magrittr_2.0.3 scales_1.2.1
[41] htmltools_0.5.4 testit_0.13 colorspace_2.1-0 labeling_0.4.2
[45] utf8_1.2.3 munsell_0.5.0 cachem_1.0.7 zoo_1.8-11
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.