The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
In this vignette, functions in the VisitorCounts package are demonstrated using park visitation data from Yellowstone National Park.
park_visitation
and
flickr_userdays
First, we load two datasets: park_visitation
stores 156
monthly observations spanning 2005 through 2017 of flickr user-days
(PUD) and visitor counts by the national park service (NPS) for 20
popular national parks in the United States. Second,
flickr_userdays
stores log US flickr user-days for the
corresponding time period.
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
For the purposes of this vignette, three time series are extracted
from these datasets. First, log_yellowstone_pud
is a time
series of 156 monthly observations of flickr photo-user-days geolocated
within Yellowstone National Park. Second,
log_yellowstone_nps
is a time series of 156 monthly
observations of counts of park visitation by the national park service.
Third, flickr_userdays
is a time series of 156 monthly
observations of log flickr user-days taken within the United States.
yellowstone_pud <- park_visitation[park_visitation$park == "YELL",]$pud #photo user days
yellowstone_nps <- park_visitation[park_visitation$park == "YELL",]$nps #national park service counts
yellowstone_pud <- ts(yellowstone_pud, start = 2005, freq = 12)
yellowstone_nps <- ts(yellowstone_nps, start = 2005, freq = 12)
log_yellowstone_pud <- log(yellowstone_pud)
log_yellowstone_nps <- log(yellowstone_nps)
log_flickr_userdays <- log(flickr_userdays)
The visitation_model()
function uses social media data,
such as the log flickr photo-user-days in
log_yellowstone_pud
, coupled with a popularity measure of
the social media platform, like the log US flickr userdays in
log_flickr_userdays
, to model percent changes in visitation
counts. By default, visitation_model()
assumes that no
visitation counts are available.
yell_visitation_model <- visitation_model(log_yellowstone_pud,
log_flickr_userdays, is_output_logged = TRUE, is_input_logged = TRUE)
## The additive constant for the model is assumed to be equal to zero.
## If a better constant is known, change the value in the constant argument.
## Instead, the actual series may be supplied in the ref_series argument.
## When no or linear trend is assumed, popularity_proxy will not be used.
If national park data is available, a reference series may be supplied to assist in parameter estimates:
yell_visitation_model_nps <- visitation_model(log_yellowstone_pud,
log_flickr_userdays,
ref_series = log_yellowstone_nps, is_output_logged = TRUE, is_input_logged = TRUE)
## When no or linear trend is assumed, popularity_proxy will not be used.
By default, plot.visiation_model()
plots the differenced
series. Typical graphical parameters may be passed to
plot.visitation_model()
, such as line width:
true_differences <- diff(log_yellowstone_nps)
lower_bound <- min(c(true_differences,diff(yell_visitation_model$visitation_fit)))-1
upper_bound <- max(c(true_differences,diff(yell_visitation_model$visitation_fit)))
plot(yell_visitation_model, ylim = c(lower_bound, upper_bound), lwd = 2)
lines(diff(log_yellowstone_nps), col = "red")
legend("bottom",c("Model Fit","True Differences"),col = c("black","red"),lty = c(1,1))
true_differences <- diff(log_yellowstone_nps)
lower_bound <- min(c(true_differences,diff(yell_visitation_model_nps$visitation_fit)))-1
upper_bound <- max(c(true_differences,diff(yell_visitation_model_nps$visitation_fit)))
plot(yell_visitation_model_nps, ylim = c(lower_bound, upper_bound),
lwd = 2,
main = "Fitted Values for Visitation Model (NPS assisted)", difference = TRUE)
lines(true_differences, col = "red")
legend("bottom",c("Model Fit","True Differences"),col = c("black","red"),lty = c(1,1))
Parameters can be inspected using
summary.visitation_model()
. Two examples can be seen
below:
## Call: visitation_model(onsite_usage = log_yellowstone_pud, popularity_proxy = log_flickr_userdays,
## is_input_logged = TRUE, is_output_logged = TRUE)
##
## Parameter Estimates:
## ===============================
## Parameter: Estimate:
## ---------- ---------
## Beta_0 (Constant): 0
## Beta_1 (Seasonality): 1.308
## Beta_2 (Trend): 0
## Lag: 0
## Lag Criterion: cross-correlation
## ===============================
## Call: visitation_model(onsite_usage = log_yellowstone_pud, popularity_proxy = log_flickr_userdays,
## ref_series = log_yellowstone_nps, is_input_logged = TRUE,
## is_output_logged = TRUE)
##
## Parameter Estimates:
## ===============================
## Parameter: Estimate:
## ---------- ---------
## Beta_0 (Constant): 11.371
## Beta_1 (Seasonality): 1.572
## Beta_2 (Trend): 0.002
## Lag: 0
## Lag Criterion: cross-correlation
## ===============================
Forecasts can be made using predict.visitation_model()
,
whose output is a visitation_forecast
class object which
can be inspected using plot
or summary
functions.
## WARNING : the model's constant (Beta_0) parameter is 0. This will result in likely inaccurate predictions.
## The model constant is understood as the mean log adjusted monthly visitation relative to the base month.
## Please provide a ref_series to the visitation_model object or provide your own custom value for the constant to visitation_model constructor
yellowstone_visitation_forecasts_nps <- predict(yell_visitation_model_nps, n_ahead = 12)
yellowstone_visitation_forecasts_withpast <- predict(yell_visitation_model, n_ahead = 12, only_new = FALSE)
## WARNING : the model's constant (Beta_0) parameter is 0. This will result in likely inaccurate predictions.
## The model constant is understood as the mean log adjusted monthly visitation relative to the base month.
## Please provide a ref_series to the visitation_model object or provide your own custom value for the constant to visitation_model constructor
Forecasts can be plotted using
plot.visitation_forecast()
:
plot(yellowstone_visitation_forecasts_nps, main = "Forecasts for Visitation Model (NPS Assisted)", date_label = "%b", date_breaks = "1 month")
## Warning in plot.window(xlim, ylim, log, ...): "date_label" is not a graphical
## parameter
## Warning in plot.window(xlim, ylim, log, ...): "date_breaks" is not a graphical
## parameter
## Warning in title(main = main, xlab = xlab, ylab = ylab, ...): "date_label" is
## not a graphical parameter
## Warning in title(main = main, xlab = xlab, ylab = ylab, ...): "date_breaks" is
## not a graphical parameter
## Warning in axis(1, ...): "date_label" is not a graphical parameter
## Warning in axis(1, ...): "date_breaks" is not a graphical parameter
## Warning in axis(2, ...): "date_label" is not a graphical parameter
## Warning in axis(2, ...): "date_breaks" is not a graphical parameter
## Warning in box(...): "date_label" is not a graphical parameter
## Warning in box(...): "date_breaks" is not a graphical parameter
plot(yellowstone_visitation_forecasts_withpast, difference = TRUE, date_breaks = "1 year", date_label = "%y")
## Warning in plot.window(xlim, ylim, log, ...): "date_breaks" is not a graphical
## parameter
## Warning in plot.window(xlim, ylim, log, ...): "date_label" is not a graphical
## parameter
## Warning in title(main = main, xlab = xlab, ylab = ylab, ...): "date_breaks" is
## not a graphical parameter
## Warning in title(main = main, xlab = xlab, ylab = ylab, ...): "date_label" is
## not a graphical parameter
## Warning in axis(1, ...): "date_breaks" is not a graphical parameter
## Warning in axis(1, ...): "date_label" is not a graphical parameter
## Warning in axis(2, ...): "date_breaks" is not a graphical parameter
## Warning in axis(2, ...): "date_label" is not a graphical parameter
## Warning in box(...): "date_breaks" is not a graphical parameter
## Warning in box(...): "date_label" is not a graphical parameter
## Visitation model forecasts:
##
## Parameter Estimates:
## ===============================
## Parameter: Estimate:
## ---------- ---------
## Beta_0 (Constant): 0
## Beta_1 (Seasonality): 1.308
## Beta_2 (Trend): 0
## Lag:
## ===============================
## Criterion for Lag Estimate: cross-correlation
## Number of Forecasts: 12
## Visitation model forecasts:
##
## Parameter Estimates:
## ===============================
## Parameter: Estimate:
## ---------- ---------
## Beta_0 (Constant): 11.371
## Beta_1 (Seasonality): 1.572
## Beta_2 (Trend): 0.002
## Lag:
## ===============================
## Criterion for Lag Estimate: cross-correlation
## Number of Forecasts: 12
The automatic decomposition function uses singular-spectrum analysis, as implemented by the Rssa package, in conjunction with an automated procedure for classifying components to decompose a time series into trend, seasonality and noise.
Several plot options are available for examining this decomposition.
The eigenvector grouping can be examined using
summary.decomposition
.
## Decomposition:
##
## Period or Component || Eigenvector Grouping
## =================== || ====================
## 12 || 2, 3
## 6 || 5, 6
## 4 || 9, 10
## 3 || 12, 13
## Trend || 1, 4
##
## Window Length: 72
## Number of Observations: 156
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.