The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
In this vignette, we consider a novel graph embedding method, Vicus (Wang B 2017).
Here, we use the Swiss roll data, which is a well known toy model.
set.seed(1)
<- 300
N <- sqrt(2 + 2 * seq(-1, 1 - 2 / N, 2 / N))
p <- 2 * runif(N, -1, 1)
y <- cbind(p * cos(2 * pi * p), y, p * sin(2 * pi * p))
X <- scale(X, center=TRUE, scale=TRUE) * 3
X <- c(rep(1:11, each = floor(N / 11)), rep(11, length=3)) labelX
library("scatterplot3d")
# Color Setting
<- labelX
colors <- c("#9E0142", "#D53E4F", "#F46D43", "#FDAE61",
cols "#FEE08B", "#FFFFBF", "#E6F598", "#ABDDA4",
"#66C2A5", "#3288BD", "#5E4FA2")
for(i in seq_along(cols)){
which(colors == i)] <- cols[i]
colors[
}
<- par("cex")
oldpar par(cex = 1.2)
scatterplot3d(X, color=colors, pch=16, main="Original Data", angle=40)
The Vicus
package provides three types of graph
embedding algorithms: Vicus
, Laplacian Eigenmaps
(LEM
), and Hessian Locally Linear Embedding
(HLLE
).
First, the graphMatrix
function computes a matrix
containing graph information for each algorithm:
library("Vicus")
<- graphMatrix(X, algorithm="Vicus", ndim=2, K=10)
objVicus <- graphMatrix(X, algorithm="LEM", ndim=2, K=10)
objLEM <- graphMatrix(X, algorithm="HLLE", ndim=2, K=5)
objHLLE str(objVicus, 2)
## List of 3
## $ M :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
## $ algorithm: chr "Vicus"
## $ ndim : num 2
str(objLEM, 2)
## List of 3
## $ M :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
## $ algorithm: chr "LEM"
## $ ndim : num 2
str(objHLLE, 2)
## List of 3
## $ M :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
## $ algorithm: chr "HLLE"
## $ ndim : num 2
Next, the embedding
function performs eigenvalue
decomposition and estimates the low-dimensional coordinates.
<- embedding(objVicus)
outVicus <- embedding(objLEM)
outLEM <- embedding(objHLLE) outHLLE
The low dimensional coordinates show that Vicus is better able to capture the local structure of the Swiss roll data.
layout(t(1:3))
plot(outVicus, col=colors, pch=16, main="Vicus", cex=2)
plot(outLEM, col=colors, pch=16, main="LEM", cex=2)
plot(outHLLE, col=colors, pch=16, main="HLLE", cex=2)
It can also be embedded to any dimension by simply changing the value
of ndim
as follows:
<- graphMatrix(X, algorithm="Vicus", ndim=3)
objVicus_3D <- graphMatrix(X, algorithm="LEM", ndim=3)
objLEM_3D <- graphMatrix(X, algorithm="HLLE", ndim=3) objHLLE_3D
The following step is the same as in 2D Embedding case above.
<- embedding(objVicus_3D)
outVicus_3D <- embedding(objLEM_3D)
outLEM_3D <- embedding(objHLLE_3D) outHLLE_3D
layout(cbind(1:2, 3:4))
scatterplot3d(X, color=colors, pch=16, main="Original Data", angle=40)
scatterplot3d(outVicus_3D, color=colors, pch=16, main="Vicus", angle=40)
scatterplot3d(outLEM_3D, color=colors, pch=16, main="LEM", angle=70)
scatterplot3d(outHLLE_3D, color=colors, pch=16, main="HLLE", angle=70)
par(cex = oldpar)
## R version 3.6.3 (2020-02-29)
## Platform: x86_64-conda-linux-gnu (64-bit)
## Running under: CentOS Linux 7 (Core)
##
## Matrix products: default
## BLAS/LAPACK: /home/koki/miniconda3/lib/libopenblasp-r0.3.17.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] Vicus_0.99.0 scatterplot3d_0.3-43
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.8 RANN_2.6.1 lattice_0.20-45 digest_0.6.29
## [5] RSpectra_0.16-0 grid_3.6.3 R6_2.5.1 jsonlite_1.8.0
## [9] magrittr_2.0.2 evaluate_0.15 highr_0.9 rlang_0.4.11
## [13] stringi_1.7.6 jquerylib_0.1.4 Matrix_1.4-0 bslib_0.3.1
## [17] rmarkdown_2.11 tools_3.6.3 stringr_1.4.0 xfun_0.29
## [21] yaml_2.3.5 fastmap_1.1.0 compiler_3.6.3 htmltools_0.5.2
## [25] knitr_1.37 sass_0.4.0
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.