The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The code below was used in R (v.4.3.3) to plot the cluster-wise values from the RFT and TFCE corrected analyses and validate them with additional mixed linear models.
We produce a figure displaying the thickness of the positive and negative hippocampal clusters in relation to the group and session variables, in RFT and TFCE models, demonstrating a steeper curve toward group 2:
#We divide the cluster values by their sum to get the average thickness per vertex
dat_beh_ses13$clustCTTFCE=(FINK_Tv_smoothed_ses13 %*% TFCEoutput$pos_mask)/sum(TFCEoutput$pos_mask>0)
dat_beh_ses13$clustRFT=(FINK_Tv_smoothed_ses13 %*% model2_RFT$pos_mask)/sum(model2_RFT$pos_mask>0)
dat_beh_ses13$neg.clustCTTFCE=(FINK_Tv_smoothed_ses13 %*% TFCEoutput$neg_mask)/sum(TFCEoutput$neg_mask>0)
library(ggplot2)
library(ggbeeswarm)
library(cowplot)
a=ggplot(data=dat_beh_ses13,aes(y=clustCTTFCE,x=as.factor(session), color=as.factor(group)))+
geom_quasirandom(dodge.width=0.5)+
geom_line(aes(group=participant_id), alpha=0.2)+
geom_smooth(aes(group=group), method="lm")+
labs(y="Mean thickness (mm)", x="session", color="group")+
guides(colour = "none")+
ggtitle("Positive cluster\n (TFCE-corrected)")+
ylim(1.1, 1.55)
b=ggplot(data=dat_beh_ses13,aes(y=clustRFT,x=as.factor(session), color=as.factor(group)))+
geom_quasirandom(dodge.width=0.5)+
geom_line(aes(group=participant_id), alpha=0.2)+
geom_smooth(aes(group=group), method="lm")+
labs(y="Mean thickness (mm)", x="session", color="group")+
guides(colour = "none")+
ggtitle("Positive cluster\n(RFT-corrected)")+
ylim(1.1, 1.55)
c=ggplot(data=dat_beh_ses13,aes(y=neg.clustCTTFCE,x=as.factor(session), color=as.factor(group)))+
geom_quasirandom(dodge.width=0.5)+
geom_line(aes(group=participant_id), alpha=0.2)+
geom_smooth(aes(group=group), method="lm")+
labs(y="Mean thickness (mm)", x="session", color="group")+
ggtitle("Negative cluster\n(TFCE-corrected)")+
scale_color_discrete(name="Group",labels=c("group 1", "group 2"))+
ylim(1.1, 1.55)
png(filename="traj.png", res=300, width=2500,height=1080)
plots=plot_grid(a,b,c, nrow=1,rel_widths=c(0.3,0.3,0.43))
print(plots)
dev.off()
As an additional validation of these results, these significant clusters were extracted as regions-of-interests and fitted in a linear mixed effects model using another R package— lmerTest (Kuznetsova, Brockhoff, and Christensen 2017).
Linear mixed effect testing the effect of session, group, and session * group interaction on the positive RFT clusters’ average thickness value
lme.RFT=lmer(clustRFT~session+group+session*group+(1|participant_id),data =dat_beh_ses13 )
summary(lme.RFT)
## Linear mixed model fit by REML. t-tests use Satterthwaite's
## method [lmerModLmerTest]
## Formula:
## clustRFT ~ session + group + session * group + (1 | participant_id)
## Data: dat_beh_ses13
##
## REML criterion at convergence: -317.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.69862 -0.43221 -0.04002 0.42291 2.57082
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant_id (Intercept) 0.004837 0.06955
## Residual 0.000236 0.01536
## Number of obs: 96, groups: participant_id, 48
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 1.326760 0.010717 54.685962 123.801 < 2e-16
## session -0.003450 0.001580 46.000000 -2.183 0.0342
## group -0.006877 0.010717 54.685962 -0.642 0.5237
## session:group 0.007645 0.001580 46.000000 4.837 1.51e-05
##
## (Intercept) ***
## session *
## group
## session:group ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) sessin group
## session -0.295
## group -0.125 0.037
## session:grp 0.037 -0.125 -0.295
Linear mixed effect testing the effect of session, group, and session * group interaction on the positive TFCE clusters’ average thickness value
lme.posTFCE=lmer(clustCTTFCE~session+group+session*group+(1|participant_id),data =dat_beh_ses13 )
summary(lme.posTFCE)
## Linear mixed model fit by REML. t-tests use Satterthwaite's
## method [lmerModLmerTest]
## Formula:
## clustCTTFCE ~ session + group + session * group + (1 | participant_id)
## Data: dat_beh_ses13
##
## REML criterion at convergence: -361.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.80112 -0.33478 0.04449 0.39053 2.57404
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant_id (Intercept) 0.0035022 0.05918
## Residual 0.0001243 0.01115
## Number of obs: 96, groups: participant_id, 48
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 1.317024 0.008983 52.385323 146.611 < 2e-16
## session -0.001835 0.001147 46.000000 -1.600 0.116
## group -0.006448 0.008983 52.385323 -0.718 0.476
## session:group 0.005776 0.001147 46.000000 5.036 7.79e-06
##
## (Intercept) ***
## session
## group
## session:group ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) sessin group
## session -0.255
## group -0.125 0.032
## session:grp 0.032 -0.125 -0.255
Linear mixed effect testing the effect of session, group, and session * group interaction on the negative TFCE clusters’ average thickness value
lme.negTFCE=lmer(neg.clustCTTFCE~session+group+session*group+(1|participant_id),data =dat_beh_ses13 )
summary(lme.negTFCE)
## Linear mixed model fit by REML. t-tests use Satterthwaite's
## method [lmerModLmerTest]
## Formula:
## neg.clustCTTFCE ~ session + group + session * group + (1 | participant_id)
## Data: dat_beh_ses13
##
## REML criterion at convergence: -248.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.90333 -0.36268 -0.08119 0.34633 2.65323
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant_id (Intercept) 0.0053540 0.07317
## Residual 0.0008885 0.02981
## Number of obs: 96, groups: participant_id, 48
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 1.291099 0.012662 71.775625 101.967 < 2e-16
## session -0.000304 0.003066 46.000002 -0.099 0.92147
## group 0.018980 0.012662 71.775625 1.499 0.13827
## session:group -0.008880 0.003066 46.000002 -2.896 0.00577
##
## (Intercept) ***
## session
## group
## session:group **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) sessin group
## session -0.484
## group -0.125 0.061
## session:grp 0.061 -0.125 -0.484
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.