The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Load the packages we need.
Create a survival model, and generate data.
sm <- SurvivalModel(baseHazard = 1/5, # default 1/5 inverse years
accrual = 5, # default 5 years
followUp = 1, # default 1 years
units = 12, unitName = "months")
R <- rand(sm, 200)
summary(R)
## LFU Event
## Min. : 0.00 Mode :logical
## 1st Qu.:14.75 FALSE:101
## Median :28.00 TRUE :99
## Mean :29.25
## 3rd Qu.:41.00
## Max. :70.00
Fit a Kaplan-Meier curve.
Now create several cancer models and generate data.
for (ignore in 1:5) {
for (jgnore in 1:4) {
cm <- CancerModel("survtester", nPossible=20, nPattern=2,
SURV = function(n) rnorm(n, 0, 2), # old default; too large
survivalModel = sm)
S <- rand(cm, 200)
model <- survfit(Surv(LFU, Event) ~ CancerSubType, S)
print(model)
plot(model)
}
}
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 90 9 NA NA NA
## CancerSubType=2 110 101 8 6 9
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 98 5 NA NA NA
## CancerSubType=2 102 0 NA NA NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 101 101 0 NA NA
## CancerSubType=2 99 94 7 5 10
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 103 95 6 5 11
## CancerSubType=2 97 97 0 0 0
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 94 81 13 11 19
## CancerSubType=2 106 88 12 10 17
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 94 94 1 1 2
## CancerSubType=2 106 0 NA NA NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 101 48 43 30 NA
## CancerSubType=2 99 72 22 18 30
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 89 2 NA NA NA
## CancerSubType=2 111 90 15 11 19
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 100 100 0 0 0
## CancerSubType=2 100 0 NA NA NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 101 12 NA NA NA
## CancerSubType=2 99 99 0 0 0
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 97 0 NA NA NA
## CancerSubType=2 103 53 34 27 53
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 102 1 NA NA NA
## CancerSubType=2 98 93 5 4 6
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 103 98 7 5 9
## CancerSubType=2 97 3 NA NA NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 113 37 NA 64 NA
## CancerSubType=2 87 87 1 0 2
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 117 1 NA NA NA
## CancerSubType=2 83 83 1 1 2
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 103 102 2 2 3
## CancerSubType=2 97 12 NA NA NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 105 18 NA NA NA
## CancerSubType=2 95 27 NA 57 NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 93 4 NA NA NA
## CancerSubType=2 107 89 15 12 17
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 88 72 11 7 19
## CancerSubType=2 112 111 3 2 4
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 108 108 0 0 0
## CancerSubType=2 92 92 0 NA NA
Now create several cancer models and generate data.
for (ignore in 1:5) {
for (jgnore in 1:4) {
cm <- CancerModel("survtester", nPossible=20, nPattern=2,
SURV = function(n) rnorm(n, 0, 0.3),
survivalModel = sm)
S <- rand(cm, 200)
model <- survfit(Surv(LFU, Event) ~ CancerSubType, S)
print(model)
plot(model)
}
}
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 92 40 45 41 NA
## CancerSubType=2 108 62 34 27 42
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 89 29 NA 59 NA
## CancerSubType=2 111 46 51 39 NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 94 35 NA 47 NA
## CancerSubType=2 106 39 62 52 NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 111 89 17 13 22
## CancerSubType=2 89 63 25 15 33
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 102 22 NA NA NA
## CancerSubType=2 98 78 15 11 22
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 78 54 15 11 22
## CancerSubType=2 122 70 28 21 44
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 98 34 NA 41 NA
## CancerSubType=2 102 28 NA 57 NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 95 43 51 31 NA
## CancerSubType=2 105 63 28 22 45
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 98 19 NA NA NA
## CancerSubType=2 102 29 NA 55 NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 97 56 32 27 46
## CancerSubType=2 103 37 56 47 NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 94 60 26 18 36
## CancerSubType=2 106 52 43 23 NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 100 5 NA NA NA
## CancerSubType=2 100 41 54 41 NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 106 40 61 48 NA
## CancerSubType=2 94 31 68 56 NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 96 46 34 27 NA
## CancerSubType=2 104 28 NA 56 NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 111 87 16 12 21
## CancerSubType=2 89 41 40 36 NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 96 55 26 20 55
## CancerSubType=2 104 53 42 27 56
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 107 65 36 24 46
## CancerSubType=2 93 24 63 57 NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 98 66 19 17 28
## CancerSubType=2 102 51 35 30 49
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 95 73 23 18 29
## CancerSubType=2 105 74 21 17 26
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 105 94 11 9 15
## CancerSubType=2 95 30 NA 56 NA
for (nPos in c(5, 10, 15)) {
for (jgnore in 1:4) {
cm <- CancerModel("survtester", nPossible=nPos, nPattern=2,
SURV = function(n) rnorm(n, 0, 0.3),
survivalModel = sm)
S <- rand(cm, 200)
model <- survfit(Surv(LFU, Event) ~ CancerSubType, S)
print(model)
plot(model)
}
}
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 90 76 12 11 15
## CancerSubType=2 110 97 12 8 19
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 101 18 NA NA NA
## CancerSubType=2 99 19 NA NA NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 92 50 34 24 51
## CancerSubType=2 108 56 38 28 50
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 95 48 40 29 51
## CancerSubType=2 105 48 45 40 NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 99 14 NA NA NA
## CancerSubType=2 101 19 NA 61 NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 91 72 15 12 23
## CancerSubType=2 109 75 21 18 35
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 96 27 NA 50 NA
## CancerSubType=2 104 40 47 38 NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 99 47 39 30 NA
## CancerSubType=2 101 53 33 30 61
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 100 35 NA 45 NA
## CancerSubType=2 100 19 NA NA NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 100 48 43 26 NA
## CancerSubType=2 100 53 31 23 NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 97 27 NA 62 NA
## CancerSubType=2 103 44 47 36 NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 98 33 NA 53 NA
## CancerSubType=2 102 24 NA 62 NA
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19041)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=C
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] survival_3.2-7 Umpire_2.0.10
##
## loaded via a namespace (and not attached):
## [1] mclust_5.4.6 lattice_0.20-41 mvtnorm_1.1-1 digest_0.6.25
## [5] grid_4.0.3 mc2d_0.1-18 magrittr_1.5 evaluate_0.14
## [9] oompaBase_3.2.9 highr_0.8 rlang_0.4.8 stringi_1.5.3
## [13] Matrix_1.2-18 rmarkdown_2.4 splines_4.0.3 tools_4.0.3
## [17] stringr_1.4.0 xfun_0.18 yaml_2.2.1 compiler_4.0.3
## [21] cluster_2.1.0 BimodalIndex_1.1.9 htmltools_0.5.0 knitr_1.30
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.