The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Load the packages we need.
library(Umpire)
library(survival)
Create a survival model, and generate data.
<- SurvivalModel(baseHazard = 1/5, # default 1/5 inverse years
sm accrual = 5, # default 5 years
followUp = 1, # default 1 years
units = 12, unitName = "months")
<- rand(sm, 200)
R summary(R)
## LFU Event
## Min. : 0.00 Mode :logical
## 1st Qu.:14.75 FALSE:101
## Median :28.00 TRUE :99
## Mean :29.25
## 3rd Qu.:41.00
## Max. :70.00
Fit a Kaplan-Meier curve.
<- survfit(Surv(LFU, Event) ~ 1, R)
baseModel plot(baseModel)
Base Kaplan-Meier survival curve.
Now create several cancer models and generate data.
for (ignore in 1:5) {
for (jgnore in 1:4) {
<- CancerModel("survtester", nPossible=20, nPattern=2,
cm SURV = function(n) rnorm(n, 0, 2), # old default; too large
survivalModel = sm)
<- rand(cm, 200)
S <- survfit(Surv(LFU, Event) ~ CancerSubType, S)
model print(model)
plot(model)
} }
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 90 9 NA NA NA
## CancerSubType=2 110 101 8 6 9
Two group survival curves (original).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 98 5 NA NA NA
## CancerSubType=2 102 0 NA NA NA
Two group survival curves (original).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 101 101 0 NA NA
## CancerSubType=2 99 94 7 5 10
Two group survival curves (original).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 103 95 6 5 11
## CancerSubType=2 97 97 0 0 0
Two group survival curves (original).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 94 81 13 11 19
## CancerSubType=2 106 88 12 10 17
Two group survival curves (original).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 94 94 1 1 2
## CancerSubType=2 106 0 NA NA NA
Two group survival curves (original).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 101 48 43 30 NA
## CancerSubType=2 99 72 22 18 30
Two group survival curves (original).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 89 2 NA NA NA
## CancerSubType=2 111 90 15 11 19
Two group survival curves (original).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 100 100 0 0 0
## CancerSubType=2 100 0 NA NA NA
Two group survival curves (original).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 101 12 NA NA NA
## CancerSubType=2 99 99 0 0 0
Two group survival curves (original).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 97 0 NA NA NA
## CancerSubType=2 103 53 34 27 53
Two group survival curves (original).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 102 1 NA NA NA
## CancerSubType=2 98 93 5 4 6
Two group survival curves (original).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 103 98 7 5 9
## CancerSubType=2 97 3 NA NA NA
Two group survival curves (original).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 113 37 NA 64 NA
## CancerSubType=2 87 87 1 0 2
Two group survival curves (original).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 117 1 NA NA NA
## CancerSubType=2 83 83 1 1 2
Two group survival curves (original).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 103 102 2 2 3
## CancerSubType=2 97 12 NA NA NA
Two group survival curves (original).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 105 18 NA NA NA
## CancerSubType=2 95 27 NA 57 NA
Two group survival curves (original).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 93 4 NA NA NA
## CancerSubType=2 107 89 15 12 17
Two group survival curves (original).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 88 72 11 7 19
## CancerSubType=2 112 111 3 2 4
Two group survival curves (original).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 108 108 0 0 0
## CancerSubType=2 92 92 0 NA NA
Two group survival curves (original).
Now create several cancer models and generate data.
for (ignore in 1:5) {
for (jgnore in 1:4) {
<- CancerModel("survtester", nPossible=20, nPattern=2,
cm SURV = function(n) rnorm(n, 0, 0.3),
survivalModel = sm)
<- rand(cm, 200)
S <- survfit(Surv(LFU, Event) ~ CancerSubType, S)
model print(model)
plot(model)
} }
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 92 40 45 41 NA
## CancerSubType=2 108 62 34 27 42
Two group survival curves (improved).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 89 29 NA 59 NA
## CancerSubType=2 111 46 51 39 NA
Two group survival curves (improved).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 94 35 NA 47 NA
## CancerSubType=2 106 39 62 52 NA
Two group survival curves (improved).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 111 89 17 13 22
## CancerSubType=2 89 63 25 15 33
Two group survival curves (improved).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 102 22 NA NA NA
## CancerSubType=2 98 78 15 11 22
Two group survival curves (improved).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 78 54 15 11 22
## CancerSubType=2 122 70 28 21 44
Two group survival curves (improved).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 98 34 NA 41 NA
## CancerSubType=2 102 28 NA 57 NA
Two group survival curves (improved).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 95 43 51 31 NA
## CancerSubType=2 105 63 28 22 45
Two group survival curves (improved).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 98 19 NA NA NA
## CancerSubType=2 102 29 NA 55 NA
Two group survival curves (improved).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 97 56 32 27 46
## CancerSubType=2 103 37 56 47 NA
Two group survival curves (improved).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 94 60 26 18 36
## CancerSubType=2 106 52 43 23 NA
Two group survival curves (improved).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 100 5 NA NA NA
## CancerSubType=2 100 41 54 41 NA
Two group survival curves (improved).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 106 40 61 48 NA
## CancerSubType=2 94 31 68 56 NA
Two group survival curves (improved).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 96 46 34 27 NA
## CancerSubType=2 104 28 NA 56 NA
Two group survival curves (improved).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 111 87 16 12 21
## CancerSubType=2 89 41 40 36 NA
Two group survival curves (improved).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 96 55 26 20 55
## CancerSubType=2 104 53 42 27 56
Two group survival curves (improved).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 107 65 36 24 46
## CancerSubType=2 93 24 63 57 NA
Two group survival curves (improved).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 98 66 19 17 28
## CancerSubType=2 102 51 35 30 49
Two group survival curves (improved).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 95 73 23 18 29
## CancerSubType=2 105 74 21 17 26
Two group survival curves (improved).
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 105 94 11 9 15
## CancerSubType=2 95 30 NA 56 NA
Two group survival curves (improved).
for (nPos in c(5, 10, 15)) {
for (jgnore in 1:4) {
<- CancerModel("survtester", nPossible=nPos, nPattern=2,
cm SURV = function(n) rnorm(n, 0, 0.3),
survivalModel = sm)
<- rand(cm, 200)
S <- survfit(Surv(LFU, Event) ~ CancerSubType, S)
model print(model)
plot(model)
} }
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 90 76 12 11 15
## CancerSubType=2 110 97 12 8 19
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 101 18 NA NA NA
## CancerSubType=2 99 19 NA NA NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 92 50 34 24 51
## CancerSubType=2 108 56 38 28 50
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 95 48 40 29 51
## CancerSubType=2 105 48 45 40 NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 99 14 NA NA NA
## CancerSubType=2 101 19 NA 61 NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 91 72 15 12 23
## CancerSubType=2 109 75 21 18 35
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 96 27 NA 50 NA
## CancerSubType=2 104 40 47 38 NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 99 47 39 30 NA
## CancerSubType=2 101 53 33 30 61
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 100 35 NA 45 NA
## CancerSubType=2 100 19 NA NA NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 100 48 43 26 NA
## CancerSubType=2 100 53 31 23 NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 97 27 NA 62 NA
## CancerSubType=2 103 44 47 36 NA
## Call: survfit(formula = Surv(LFU, Event) ~ CancerSubType, data = S)
##
## n events median 0.95LCL 0.95UCL
## CancerSubType=1 98 33 NA 53 NA
## CancerSubType=2 102 24 NA 62 NA
sessionInfo()
## R version 4.4.1 (2024-06-14 ucrt)
## Platform: x86_64-w64-mingw32/x64
## Running under: Windows 11 x64 (build 26100)
##
## Matrix products: default
##
##
## locale:
## [1] LC_COLLATE=C
## [2] LC_CTYPE=English_United States.utf8
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.utf8
##
## time zone: America/New_York
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] survival_3.6-4 Umpire_2.0.11
##
## loaded via a namespace (and not attached):
## [1] sass_0.4.9 utf8_1.2.4 generics_0.1.3 tidyr_1.3.1
## [5] rstatix_0.7.2 lattice_0.22-6 digest_0.6.36 magrittr_2.0.3
## [9] evaluate_0.24.0 grid_4.4.1 mvtnorm_1.2-5 fastmap_1.2.0
## [13] jsonlite_1.8.8 Matrix_1.7-0 backports_1.5.0 mclust_6.1.1
## [17] purrr_1.0.2 fansi_1.0.6 mc2d_0.2.1 BimodalIndex_1.1.9
## [21] scales_1.3.0 jquerylib_0.1.4 abind_1.4-5 cli_3.6.3
## [25] rlang_1.1.4 munsell_0.5.1 splines_4.4.1 cachem_1.1.0
## [29] yaml_2.3.10 tools_4.4.1 ggsignif_0.6.4 dplyr_1.1.4
## [33] colorspace_2.1-1 ggplot2_3.5.1 ggpubr_0.6.0 broom_1.0.6
## [37] vctrs_0.6.5 R6_2.5.1 lifecycle_1.0.4 car_3.1-2
## [41] oompaBase_3.2.9 cluster_2.1.6 pkgconfig_2.0.3 pillar_1.9.0
## [45] bslib_0.8.0 gtable_0.3.5 glue_1.7.0 xfun_0.46
## [49] tibble_3.2.1 tidyselect_1.2.1 highr_0.11 knitr_1.48
## [53] htmltools_0.5.8.1 rmarkdown_2.27 carData_3.0-5 compiler_4.4.1
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.