The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Version: 1.0.0
Title: Interactive Statistical Learning Functions
Description: An educational toolkit for learning statistical concepts through interactive exploration. Provides functions for basic statistics (mean, variance, etc.) and probability distributions with step-by-step explanations and interactive learning modes. Each function can be used for simple calculations, detailed learning with explanations, or interactive practice with feedback.
License: MIT + file LICENSE
Imports: stats, magick (≥ 2.7.3), crayon (≥ 1.3.4)
Suggests: knitr, rmarkdown
Config/testthat/edition: 3
VignetteBuilder: knitr
Encoding: UTF-8
RoxygenNote: 7.3.2
NeedsCompilation: yes
Packaged: 2025-02-17 15:31:07 UTC; andriy
Author: Carlos Javier Hellin Asensio [aut], Jose Manuel Gomez Caceres [aut], Dennis Monheimius [aut], Eduardo Benito [aut], Juan Jose Cuadrado [aut], Andriy Protsak Protsak [aut, cre], Universidad de Alcala de Henares [cph]
Maintainer: Andriy Protsak Protsak <andriy.protsak@edu.uah.es>
Repository: CRAN
Date/Publication: 2025-02-18 11:10:07 UTC

Absolute Accumulated Frequency Function

Description

This function calculates the absolute accumulated frequency of a value in a numeric vector.

Usage

absolute_acum_frequency(v = NULL, x = NULL, learn = FALSE, interactive = FALSE)

Arguments

v

Optional numeric vector (not needed for interactive mode)

x

Optional numeric value to count (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The absolute accumulated frequency of x in v (for non-interactive mode)

Examples

data <- c(1,4,3,3,2,5,7,12,1,2,3,12)
value <- 12

# Simple calculation
absolute_acum_frequency(data, value)

# Learning mode
absolute_acum_frequency(data, value, learn = TRUE)

# Interactive mode
if(interactive()){
absolute_acum_frequency(interactive = TRUE)
}


Absolute Frequency Function

Description

This function calculates the absolute frequency of a value in a numeric vector.

Usage

absolute_frequency(v = NULL, x = NULL, learn = FALSE, interactive = FALSE)

Arguments

v

Optional numeric vector (not needed for interactive mode)

x

Optional numeric value to count (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The absolute frequency of x in v (for non-interactive mode)

Examples

data <- c(1,4,3,3,2,5,7,12,1,2,3,12)
value <- 12

# Simple calculation
absolute_frequency(data, value)

# Learning mode
absolute_frequency(data, value, learn = TRUE)

# Interactive mode
if(interactive()){
absolute_frequency(interactive = TRUE)
}


Average Absolute Deviation Function

Description

This function calculates the average absolute deviation of a numbers vector.

Usage

average_deviation(x = NULL, learn = FALSE, interactive = FALSE)

Arguments

x

Optional numeric vector (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The average absolute deviation of the vector (for non-interactive mode)

Examples

data <- c(7,2,5,7,1,4,12)

# Simple calculation
average_deviation(data)

# Learning mode
average_deviation(data, learn = TRUE)

# Interactive mode
if(interactive()){
average_deviation(interactive = TRUE)
}


Binomial Distribution Function

Description

This function calculates the binomial distribution probability.

Usage

binomial_(n = NULL, x = NULL, p = NULL, learn = FALSE, interactive = FALSE)

Arguments

n

Optional number of trials (not needed for interactive mode)

x

Optional number of successes (not needed for interactive mode)

p

Optional probability of success (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The binomial probability (for non-interactive mode)

Examples

n <- 3
x <- 2
p <- 0.7

# Simple calculation
binomial_(n, x, p)

# Learning mode
binomial_(n, x, p, learn = TRUE)

# Interactive mode
if(interactive()){
binomial_(interactive = TRUE)
}


Chi-squared Distribution Function

Description

This function calculates the chi-squared statistic between two groups.

Usage

chisquared(x = NULL, y = NULL, learn = FALSE, interactive = FALSE)

Arguments

x

Optional first vector (not needed for interactive mode)

y

Optional second vector (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The chi-squared statistic (for non-interactive mode)

Examples

x <- c(70,75,74,72,68,59)
y <- c(74,77,70,80,72,76)

# Simple calculation
chisquared(x, y)

# Learning mode
chisquared(x, y, learn = TRUE)

# Interactive mode
if(interactive()){
chisquared(interactive = TRUE)
}


Covariance Function

Description

This function calculates the covariance between two vectors of numbers.

Usage

covariance(x = NULL, y = NULL, learn = FALSE, interactive = FALSE)

Arguments

x

Optional first numeric vector (not needed for interactive mode)

y

Optional second numeric vector (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The covariance between the two vectors (for non-interactive mode)

Examples

data <- c(10,4,5,7,3,4,1)
data2 <- c(1,8,3,4,4,5,7)

# Simple calculation
covariance(data, data2)

# Learning mode
covariance(data, data2, learn = TRUE)

# Interactive mode
if(interactive()){
covariance(interactive = TRUE)
}


Coefficient of Variation Function

Description

This function calculates the coefficient of variation of a numbers vector.

Usage

cv(x = NULL, learn = FALSE, interactive = FALSE)

Arguments

x

Optional numeric vector (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The coefficient of variation of the vector (for non-interactive mode)

Examples

data <- c(10,4,5,7,3,4,1)

# Simple calculation
cv(data)

# Learning mode
cv(data, learn = TRUE)

# Interactive mode
if(interactive()){
cv(interactive = TRUE)
}


Draw Vector Function

Description

This function prints all the elements of a vector

Usage

drawVector(buffer)

Arguments

buffer

A vector of elements to be printed

Value

No return value, prints to screen

Examples

## Not run: 
data <- c(1:12)
drawVector(data)

## End(Not run)

Fisher's F Distribution Function

Description

This function calculates the F statistic between two groups.

Usage

fisher(x = NULL, y = NULL, learn = FALSE, interactive = FALSE)

Arguments

x

Optional first vector (not needed for interactive mode)

y

Optional second vector (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The F statistic (for non-interactive mode)

Examples

x <- c(70,75,74,72,68,59)
y <- c(74,77,70,80,72,76)

# Simple calculation
fisher(x, y)

# Learning mode
fisher(x, y, learn = TRUE)

# Interactive mode
if(interactive()){
fisher(interactive = TRUE)
}


Geometric Mean Function

Description

This function calculates the geometric mean of a numeric vector. Can be used in three modes: simple calculation, learning mode with step-by-step explanation, or interactive mode for practice.

Usage

geometric_mean(x = NULL, learn = FALSE, interactive = FALSE)

Arguments

x

Optional numeric vector (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The geometric mean of the vector (for non-interactive mode)

Examples

data <- c(5,21,12,7,3,9,1)
# Simple calculation
geometric_mean(data)

# Learning mode
geometric_mean(data, learn = TRUE)

# Interactive mode
if(interactive()){
geometric_mean(interactive = TRUE)
}


Get User Action Function

Description

This function gets the buffer introduced by the user. Typically a numerical vector.

Usage

getUserAction()

Value

A vector entered by the user

Examples

## Not run: 
vector <- getUserAction()

## End(Not run)

Harmonic Mean Function

Description

This function calculates the harmonic mean of a numbers vector.

Usage

harmonic_mean(x = NULL, learn = FALSE, interactive = FALSE)

Arguments

x

Optional numeric vector (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The harmonic mean of the vector (for non-interactive mode)

Examples

data <- c(1,4,3,3,2,5,7,12,1,2,3,12)

# Simple calculation
harmonic_mean(data)

# Learning mode
harmonic_mean(data, learn = TRUE)

# Interactive mode
if(interactive()){
harmonic_mean(interactive = TRUE)
}


Initialize Images Function

Description

This function displays an image from the package resources.

Usage

initImages(image_name)

Arguments

image_name

Name of the image file in inst/images

Value

No return value


Laplace's Rule Function

Description

This function calculates Laplace's Rule for a probability experiment.

Usage

laplace(x = NULL, y = NULL, learn = FALSE, interactive = FALSE)

Arguments

x

Optional first vector (not needed for interactive mode)

y

Optional second vector (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The probability according to Laplace's Rule (for non-interactive mode)

Examples

data <- 3
data2 <- c(1,2,3,4,5,6)

# Simple calculation
laplace(data, data2)

# Learning mode
laplace(data, data2, learn = TRUE)

# Interactive mode
if(interactive()){
laplace(interactive = TRUE)
}


Statistical Mean Function

Description

This function calculates the arithmetic mean of a numeric vector. Can be used in three modes: simple calculation, learning mode with step-by-step explanation, or interactive mode for practice.

Usage

mean_(x = NULL, learn = FALSE, interactive = FALSE)

Arguments

x

Optional numeric vector (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The arithmetic mean of the vector

Examples

# Simple calculation
data <- c(1,2,2,5,10,4,2)
mean_(data)

# Learning mode
mean_(data, learn = TRUE)

# Interactive mode
if(interactive()){
mean_(interactive = TRUE)
}


Median Function

Description

This function calculates the median of a numbers vector.

Usage

median_(x = NULL, learn = FALSE, interactive = FALSE)

Arguments

x

Optional numeric vector (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The median of the vector (for non-interactive mode)

Examples

data <- c(1,3,2,5,12,4,4,2,9)

# Simple calculation
median_(data)

# Learning mode
median_(data, learn = TRUE)

# Interactive mode
if(interactive()){
median_(interactive = TRUE)
}


Mode Function

Description

This function calculates the mode of a numbers vector.

Usage

mode_(x = NULL, learn = FALSE, interactive = FALSE)

Arguments

x

Optional numeric vector (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The mode of the vector (for non-interactive mode)

Examples

data <- c(5,21,12,7,3,9,1)

# Simple calculation
mode_(data)

# Learning mode
mode_(data, learn = TRUE)

# Interactive mode
if(interactive()){
mode_(interactive = TRUE)
}


Normal Distribution Function

Description

This function calculates the normal distribution probability density.

Usage

normal(x = NULL, learn = FALSE, interactive = FALSE)

Arguments

x

Optional numeric value (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The normal probability density (for non-interactive mode)

Examples

x <- 0.1

# Simple calculation
normal(x)

# Learning mode
normal(x, learn = TRUE)

# Interactive mode
if(interactive()){
normal(interactive = TRUE)
}


Pearson Correlation Function

Description

This function calculates the Pearson correlation coefficient between two vectors of numbers.

Usage

pearson(x = NULL, y = NULL, learn = FALSE, interactive = FALSE)

Arguments

x

Optional first numeric vector (not needed for interactive mode)

y

Optional second numeric vector (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The Pearson correlation coefficient between the two vectors (for non-interactive mode)

Examples

data <- c(10,4,5,7,3,4,1)
data2 <- c(1,8,3,4,4,5,7)

# Simple calculation
pearson(data, data2)

# Learning mode
pearson(data, data2, learn = TRUE)

# Interactive mode
if(interactive()){
pearson(interactive = TRUE)
}


Percentile Function

Description

This function calculates the percentiles of a numeric vector.

Usage

percentile(x = NULL, p = NULL, learn = FALSE, interactive = FALSE)

Arguments

x

Optional numeric vector (not needed for interactive mode)

p

Numeric value between 0 and 1 for percentile calculation (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The percentile value (for non-interactive mode)

Examples

data <- c(1,4,3,3,2,5,7,12)

# Simple calculation
percentile(data, 0.3)

percentile(data, 0.3, learn = TRUE)

if(interactive()){
percentile(interactive = TRUE)
}


Poisson Distribution Function

Description

This function calculates the Poisson distribution probability.

Usage

poisson_(k = NULL, lam = NULL, learn = FALSE, interactive = FALSE)

Arguments

k

Optional number of occurrences (not needed for interactive mode)

lam

Optional expected value lambda (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The Poisson probability (for non-interactive mode)

Examples

lam <- 2
k <- 3

# Simple calculation
poisson_(k, lam)

# Learning mode
poisson_(k, lam, learn = TRUE)

# Interactive mode
if(interactive()){
poisson_(interactive = TRUE)
}


Quartiles Function

Description

This function calculates the quartiles of a numeric vector.

Usage

quartile(x = NULL, learn = FALSE, interactive = FALSE)

Arguments

x

Optional numeric vector (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The quartiles of the vector (for non-interactive mode)

Examples

data <- c(1,2,2,5,10,4,2)

# Simple calculation
quartile(data)

# Learning mode
quartile(data, learn = TRUE)

# Interactive mode
if(interactive()){
quartile(interactive = TRUE)
}


Relative Accumulated Frequency Function

Description

This function calculates the relative accumulated frequency of a value in a numeric vector.

Usage

relative_acum_frequency(v = NULL, x = NULL, learn = FALSE, interactive = FALSE)

Arguments

v

Optional numeric vector (not needed for interactive mode)

x

Optional numeric value to count (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The relative accumulated frequency of x in v (for non-interactive mode)

Examples

data <- c(1,4,3,3,2,5,7,12,1,2,3,12)
value <- 12

# Simple calculation
relative_acum_frequency(data, value)

# Learning mode
relative_acum_frequency(data, value, learn = TRUE)

# Interactive mode
if(interactive()){
relative_acum_frequency(interactive = TRUE)
}


Relative Frequency Function

Description

This function calculates the relative frequency of a value in a numeric vector.

Usage

relative_frequency(v = NULL, x = NULL, learn = FALSE, interactive = FALSE)

Arguments

v

Optional numeric vector (not needed for interactive mode)

x

Optional numeric value to count (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The relative frequency of x in v (for non-interactive mode)

Examples

data <- c(1,4,3,3,2,5,7,12,1,2,3,12)
value <- 12

# Simple calculation
relative_frequency(data, value)

# Learning mode
relative_frequency(data, value, learn = TRUE)

# Interactive mode
if(interactive()){
relative_frequency(interactive = TRUE)
}


Standard Deviation Function

Description

This function calculates the standard deviation of a numbers vector.

Usage

standard_deviation(x = NULL, learn = FALSE, interactive = FALSE)

Arguments

x

Optional numeric vector (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The standard deviation of the vector (for non-interactive mode)

Examples

data <- c(1,5,3,7,10,4,2)

# Simple calculation
standard_deviation(data)

# Learning mode
standard_deviation(data, learn = TRUE)

# Interactive mode
if(interactive()){
standard_deviation(interactive = TRUE)
}


Student's t Distribution Function

Description

This function calculates the t-statistic for sample data.

Usage

tstudent(
  x = NULL,
  u = NULL,
  s = NULL,
  n = NULL,
  learn = FALSE,
  interactive = FALSE
)

Arguments

x

Optional sample mean (not needed for interactive mode)

u

Optional population mean (not needed for interactive mode)

s

Optional standard deviation (not needed for interactive mode)

n

Optional sample size (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The t-statistic (for non-interactive mode)

Examples

x <- 52.9
u <- 50
s <- 3
n <- 10

# Simple calculation
tstudent(x, u, s, n)

# Learning mode
tstudent(x, u, s, n, learn = TRUE)

# Interactive mode
if(interactive()){
tstudent(interactive = TRUE)
}


Variance Function

Description

This function calculates the variance of a numbers vector.

Usage

variance(x = NULL, learn = FALSE, interactive = FALSE)

Arguments

x

Optional numeric vector (not needed for interactive mode)

learn

Logical, if TRUE shows step-by-step explanation

interactive

Logical, if TRUE enables interactive practice mode

Value

The variance of the vector (for non-interactive mode)

Examples

data <- c(10,4,5,7,3,4,1)

# Simple calculation
variance(data)

# Learning mode
variance(data, learn = TRUE)

# Interactive mode
if(interactive()){
variance(interactive = TRUE)
}

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.