Converting numeric values to class "Date"

Mark Eisler and Ana Rabaza

February 11, 2026

1 Introduction

For each observation of a subject in a longitudinal study data set, the main Transition
package functions add_prev_date(), add_prev_result() and add_transitions() all need
to identify the previous observation for that same subject, if any. For compatibility with
these Transition package functions, the timings of observations in a dataset, each referred
to as a timepoint, should be coded within the data frame as R objects of class "Date",
representing calendar dates.

This vignette explains how timepoints represented by numeric values in data may be easily
converted to class "Date", using the R base package function as.Date().

2 Convert numeric values representing year to class "Date"

We start by creating an example data frame of longitudinal data containing years 2018 to
2025 as numeric values for three subjects with observations having one of three possible
ordinal values: -

> (df <- data.frame(
subject = rep(1001:1003),
timepoint = rep(2018:2025, each = 3),
result = g1(3, 4, lab = c("good", "bad", "ugly"), ordered = TRUE)
))

subject timepoint result

1 1001 2018 good
2 1002 2018 good
3 1003 2018 good
4 1001 2019 good
5 1002 2019 bad
6 1003 2019 bad
7 1001 2020 bad
8 1002 2020 bad
9 1003 2020 ugly
10 1001 2021 ugly
11 1002 2021 ugly
12 1003 2021 ugly

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Dates.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/as.Date.html

13 1001 2022 good

14 1002 2022 good
15 1003 2022 good
16 1001 2023 good
17 1002 2023 bad
18 1003 2023 bad
19 1001 2024 bad
20 1002 2024 bad
21 1003 2024 ugly
22 1001 2025 ugly
23 1002 2025 ugly
24 1003 2025 ugly

We convert the numeric values for year in the timepoint column to class "Date", using
as.Date() with consistent arbitrary values of January 1st for month and day: -

> (df <- transform(
df,
timepoint = as.Date(paste(timepoint, "01", "01", sep = "-"))
J))

subject timepoint result

1 1001 2018-01-01 good
2 1002 2018-01-01 good
3 1003 2018-01-01 good
4 1001 2019-01-01 good
5 1002 2019-01-01 bad
6 1003 2019-01-01 bad
7 1001 2020-01-01 bad
8 1002 2020-01-01 bad
9 1003 2020-01-01 ugly
10 1001 2021-01-01 ugly
11 1002 2021-01-01 ugly
12 1003 2021-01-01 ugly
13 1001 2022-01-01 good
14 1002 2022-01-01 good
15 1003 2022-01-01 good
16 1001 2023-01-01 good
17 1002 2023-01-01 bad
18 1003 2023-01-01 bad
19 1001 2024-01-01 bad
20 1002 2024-01-01 bad
21 1003 2024-01-01 ugly
22 1001 2025-01-01 ugly
23 1002 2025-01-01 ugly
24 1003 2025-01-01 ugly

We can now use the add_prev_result() function with default values for all but the first
argument to add a column of results from the previous observation: -

> (df <- add_prev_result(df))

https://stat.ethz.ch/R-manual/R-devel/library/base/html/as.Date.html

subject timepoint result prev_result

1 1001 2018-01-01 good <NA>
2 1002 2018-01-01 good <NA>
3 1003 2018-01-01 good <NA>
4 1001 2019-01-01 good good
5 1002 2019-01-01 bad good
6 1003 2019-01-01 bad good
7 1001 2020-01-01 bad good
8 1002 2020-01-01 bad bad
9 1003 2020-01-01 ugly bad
10 1001 2021-01-01 ugly bad
11 1002 2021-01-01 ugly bad
12 1003 2021-01-01 ugly ugly
13 1001 2022-01-01 good ugly
14 1002 2022-01-01 good ugly
15 1003 2022-01-01 good ugly
16 1001 2023-01-01 good good
17 1002 2023-01-01 bad good
18 1003 2023-01-01 bad good
19 1001 2024-01-01 bad good
20 1002 2024-01-01 bad bad
21 1003 2024-01-01 ugly bad
22 1001 2025-01-01 ugly bad
23 1002 2025-01-01 ugly bad
24 1003 2025-01-01 ugly ugly

Finally, we can format the class "Date" timepoint column to show just the year, as in the
original data: -

> transform(df, timepoint = format (timepoint, "J4Y"))

subject timepoint result prev_result

1 1001 2018 good <NA>
2 1002 2018 good <NA>
3 1003 2018 good <NA>
4 1001 2019 good good
5 1002 2019 bad good
6 1003 2019 bad good
7 1001 2020 bad good
8 1002 2020 bad bad
9 1003 2020 ugly bad
10 1001 2021 ugly bad
11 1002 2021 ugly bad
12 1003 2021 ugly ugly
13 1001 2022 good ugly
14 1002 2022 good ugly
15 1003 2022 good ugly
16 1001 2023 good good
17 1002 2023 bad good
18 1003 2023 bad good
19 1001 2024 bad good
20 1002 2024 bad bad

21
22
23
24

1003
1001
1002
1003

2024 ugly bad
2025 ugly bad
2025 ugly bad
2025 ugly ugly

3 Convert numeric values representing year and month

to class "Date"

We create another example data frame of longitudinal data containing year and month July
2024 to June 2025 as numeric values for two subjects with observations having one of two
possible ordinal values: -

> (df <- data.frame(

© 00 N O WN -

=
= O

12
13
14
15
16
17
18
19
20
21
22
23
24

)

subject

1001
1002
1001
1002
1001
1002
1001
1002
1001
1002
1001
1002
1001
1002
1001
1002
1001
1002
1001
1002
1001
1002
1001
1002

subject = 1001:1002,

year = rep(2024:2025, each = 12),

month = rep(c(7:12, 1:6), each = 2),

result = g1(2, 3, lab = c("low", "high"), ordered = TRUE)

year month result
2024 7 low
2024 7 low
2024 8 low
2024 8 high
2024 9 high
2024 9 high

2024 10 low
2024 10 low
2024 11 low
2024 11 high
2024 12 high

2024 12 high
2025 1 low
2025 1 low
2025 2 low
2025 2 high
2025 3 high
2025 3 high
2025 4 low
2025 4 low
2025 5 low
2025 5 high
2025 6 high
2025 6 high

We convert numeric values for year and month to class "Date", using as.Date() with a
consistent arbitrary value of 1st for day of the month: -

> (df <- transform(

daf,

https://stat.ethz.ch/R-manual/R-devel/library/base/html/as.Date.html

timepoint = as.Date(paste(year, month, "01", sep = "-")),
year = NULL,
month = NULL

))

subject result timepoint

1 1001 low 2024-07-01
2 1002 low 2024-07-01
3 1001 low 2024-08-01
4 1002 high 2024-08-01
5 1001 high 2024-09-01
6 1002 high 2024-09-01
7 1001 low 2024-10-01
8 1002 low 2024-10-01
9 1001 low 2024-11-01
10 1002 high 2024-11-01
11 1001 high 2024-12-01
12 1002 high 2024-12-01
13 1001 low 2025-01-01
14 1002 low 2025-01-01
15 1001 low 2025-02-01
16 1002 high 2025-02-01
17 1001 high 2025-03-01
18 1002 high 2025-03-01
19 1001 low 2025-04-01
20 1002 low 2025-04-01
21 1001 low 2025-05-01
22 1002 high 2025-05-01
23 1001 high 2025-06-01
24 1002 high 2025-06-01

We can now use the add_transitions() function with default values for all but the first
argument to add a column of transitions: -

> (df <- add_transitions(df))

subject result timepoint transition

1 1001 low 2024-07-01 NA
2 1002 low 2024-07-01 NA
3 1001 low 2024-08-01

4 1002 high 2024-08-01 1
5 1001 high 2024-09-01 1
6 1002 high 2024-09-01 0
7 1001 low 2024-10-01 -1
8 1002 low 2024-10-01 -1
9 1001 low 2024-11-01 0
10 1002 high 2024-11-01 1
11 1001 high 2024-12-01 1
12 1002 high 2024-12-01 0
13 1001 low 2025-01-01 -1
14 1002 low 2025-01-01 -1

15 1001 low 2025-02-01
16 1002 high 2025-02-01
17 1001 high 2025-03-01
18 1002 high 2025-03-01
19 1001 low 2025-04-01
20 1002 low 2025-04-01
21 1001 low 2025-05-01
22 1002 high 2025-05-01
23 1001 high 2025-06-01
24 1002 high 2025-06-01

1
Or PrPOrRFPrOoOrEFrOo

Finally, we can format the class "Date" timepoint column to show just the month and year,
as in the original data: -

> transform(df, timepoint = format(timepoint, ")b-%4Y"))

subject result timepoint transition

1 1001 low Jul-2024 NA
2 1002 low Jul-2024 NA
3 1001 low Aug-2024 0
4 1002 high Aug-2024 1
5 1001 high Sep-2024 1
6 1002 high Sep-2024 0
7 1001 low Oct-2024 -1
8 1002 low 0Oct-2024 -1
9 1001 low Nov-2024 0
10 1002 high Nov-2024 1
11 1001 high Dec-2024 1
12 1002 high Dec-2024 0
13 1001 low Jan-2025 -1
14 1002 low Jan-2025 -1
15 1001 low Feb-2025 0
16 1002 high Feb-2025 1
17 1001 high Mar-2025 1
18 1002 high Mar-2025 0
19 1001 low Apr-2025 -1
20 1002 low Apr-2025 -1
21 1001 low May-2025 0
22 1002 high May-2025 1
23 1001 high Jun-2025 1
24 1002 high Jun-2025 0

	Introduction
	Convert numeric values representing year to class =2```̃`'`.=`?=`!=`:=`;=`,=` "Date"
	Convert numeric values representing year and month to class =2```̃`'`.=`?=`!=`:=`;=`,=` "Date"

