The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
None
util_negative_binomial_aic()
to calculate the AIC for the negative binomial distribution.util_zero_truncated_negative_binomial_param_estimate()
to estimate the parameters of the zero-truncated negative binomial distribution. Add function util_zero_truncated_negative_binomial_aic()
to calculate the AIC for the zero-truncated negative binomial distribution. Add function util_zero_truncated_negative_binomial_stats_tbl()
to create a summary table of the zero-truncated negative binomial distribution.util_zero_truncated_poisson_param_estimate()
to estimate the parameters of the zero-truncated Poisson distribution. Add function util_zero_truncated_poisson_aic()
to calculate the AIC for the zero-truncated Poisson distribution. Add function util_zero_truncated_poisson_stats_tbl()
to create a summary table of the zero-truncated Poisson distribution.util_f_param_estimate()
and util_f_aic()
to estimate the parameters and calculate the AIC for the F distribution.util_zero_truncated_geometric_param_estimate()
to estimate the parameters of the zero-truncated geometric distribution. Add function util_zero_truncated_geometric_aic()
to calculate the AIC for the zero-truncated geometric distribution. Add function util_zero_truncated_geometric_stats_tbl()
to create a summary table of the zero-truncated geometric distribution.util_triangular_aic()
to calculate the AIC for the triangular distribution.util_t_param_estimate()
to estimate the parameters of the T distribution. Add function util_t_aic()
to calculate the AIC for the T distribution.util_pareto1_param_estimate()
to estimate the parameters of the Pareto Type I distribution. Add function util_pareto1_aic()
to calculate the AIC for the Pareto Type I distribution. Add function util_pareto1_stats_tbl()
to create a summary table of the Pareto Type I distribution.util_paralogistic_param_estimate()
to estimate the parameters of the paralogistic distribution. Add function util_paralogistic_aic()
to calculate the AIC for the paralogistic distribution. Add fnction util_paralogistic_stats_tbl()
to create a summary table of the paralogistic distribution.util_inverse_weibull_param_estimate()
to estimate the parameters of the Inverse Weibull distribution. Add function util_inverse_weibull_aic()
to calculate the AIC for the Inverse Weibull distribution. Add function util_inverse_weibull_stats_tbl()
to create a summary table of the Inverse Weibull distribution.util_inverse_pareto_param_estimate()
to estimate the parameters of the Inverse Pareto distribution. Add function util_inverse_pareto_aic()
to calculate the AIC for the Inverse Pareto distribution. Add Function util_inverse_pareto_stats_tbl()
to create a summary table of the Inverse Pareto distribution.util_inverse_burr_param_estimate()
to estimate the parameters of the Inverse Gamma distribution. Add function util_inverse_burr_aic()
to calculate the AIC for the Inverse Gamma distribution. Add function util_inverse_burr_stats_tbl()
to create a summary table of the Inverse Gamma distribution.util_generalized_pareto_param_estimate()
to estimate the parameters of the Generalized Pareto distribution. Add function util_generalized_pareto_aic()
to calculate the AIC for the Generalized Pareto distribution. Add function util_generalized_pareto_stats_tbl()
to create a summary table of the Generalized Pareto distribution.util_generalized_beta_param_estimate()
to estimate the parameters of the Generalized Gamma distribution. Add function util_generalized_beta_aic()
to calculate the AIC for the Generalized Gamma distribution. Add function util_generalized_beta_stats_tbl()
to create a summary table of the Generalized Gamma distribution.util_zero_truncated_binomial_stats_tbl()
to create a summary table of the Zero Truncated binomial distribution. Add function util_zero_truncated_binomial_param_estimate()
to estimate the parameters of the Zero Truncated binomial distribution. Add function util_zero_truncated_binomial_aic()
to calculate the AIC for the Zero Truncated binomial distribution.util_negative_binomial_param_estimate()
to add the use of optim()
for parameter estimation..return_tibble = TRUE
for quantile_normalize()
None
quantile_normalize()
to normalize data using quantiles.check_duplicate_rows()
to check for duplicate rows in a data frame.util_chisquare_param_estimate()
to estimate the parameters of the chi-square distribution.tidy_mcmc_sampling()
to sample from a distribution using MCMC. This outputs the function sampled data and a diagnostic plot.util_dist_aic()
functions to calculate the AIC for a distribution.tidy_multi_single_dist()
to respect the .return_tibble
parametertidy_multi_single_dist()
to exclude the .return_tibble
parameter from returning in the distribution parameters.mcmc
where applicable.tidy_distribution_comparison()
to include the new AIC calculations from the dedicated util_dist_aic()
functions.tidy_multi_single_dist()
to be modified in that it now requires the user to pass the parameter of .return_tibbl
with either TRUE or FALSE as it was introduced into the tidy_
distribution functions which now use data.table
under the hood to generate data.|>
pipe instead of the %>%
which has caused a need to update the minimum R version to 4.1.0tidy_triangular()
util_triangular_param_estimate()
util_triangular_stats_tbl()
triangle_plot()
tidy_autoplot()
cvar()
and csd()
to a vectorized approach from @kokbent which speeds these up by over 100xtidy_
distribution functions to generate data using data.table
this in many instances has resulted in a speed up of 30% or more.dplyr::cur_data()
as it was deprecated in dplyr in favor of using dplyr::pick()
tidy_triangular()
to all autoplot functions.tidy_multi_dist_autoplot()
the .plot_type = "quantile"
did not work.cskewness()
to take advantage of vectorization with a speedup of 124x faster.ckurtosis()
with vectorization to improve speed by 121x per benchmark testing.None
convert_to_ts()
which will convert a tidy_
distribution into a time series in either ts
format or tibble
you can also have it set to wide or long by using .pivot_longer
set to TRUE and .ret_ts
set to FALSEutil_burr_stats_tbl()
util_burr_param_estimate()
None
util_burr_param_estimate()
tidy_distribution_comparison()
to add a parameter of .round_to_place
which allows a user to round the parameter estimates passed to their corresponding distribution parameters.None
tidy_bernoulli()
util_bernoulli_param_estimate()
util_bernoulli_stats_tbl()
tidy_stat_tbl()
to fix tibble
output so it no longer ignores passed arguments and fix data.table
to directly pass … arguments.tidy_bernoulli()
to autoplot.tidy_stat_tbl()
dist_type_extractor()
which is used for several functions in the library.dist_type_extractor()
util_dist_stats_tbl()
functions to use dist_type_extractor()
autoplot
functions for tidy_bernoulli()
dist_type_extractor()
tidy_stat_tbl()
to use dist_type_extractor()
p
and q
calculations.None
bootstrap_density_augment()
bootstrap_p_vec()
and bootstrap_p_augment()
bootstrap_q_vec()
and bootstrap_q_augment()
cmean()
chmean()
cgmean()
cmedian()
csd()
ckurtosis()
cskewness()
cvar()
bootstrap_stat_plot()
tidy_stat_tbl()
Fix #281 adds the parameter of .user_data_table
which is set to FALSE
by default. If set to TRUE
will use [data.table::melt()]
for the underlying work speeding up the output from a benchmark test of regular tibble
at 72 seconds to data.table.
at 15 seconds.prop
check in tidy_bootstrap()
bootstrap_density_augment()
output.None
tidy_normal()
to list of tested distributions. Add AIC
from a linear model for metric, and add stats::ks.test()
as a metric.None
None
tidy_distribution_summary_tbl()
purrr::compact()
on the list of distributions passed in order to prevent the issue occurring in #212tidy_distribution_comparison()
more robust in terms of handling bad or erroneous data.tidy_multi_single_dist()
which helps it to work with other functions like tidy_random_walk()
None
color_blind()
td_scale_fill_colorblind()
and td_scale_color_colorblind()
ci_lo()
and ci_hi()
tidy_bootstrap()
bootstrap_unnest_tbl()
tidy_distribution_comparison()
_autoplot
functions to include cumulative mean MCMC chart by taking advantage of the .num_sims
parameter of tidy_
distribution functions.tidy_empirical()
to add a parameter of .distribution_type
tidy_empirical()
is now again plotted by _autoplot
functions..num_sims
parameter to tidy_empirical()
ci_lo()
and ci_hi()
to all stats tbl functions.distribution_family_type
to discrete
for tidy_geometric()
None
tidy_four_autoplot()
- This will auto plot the density, qq, quantile and probability plots to a single graph.util_weibull_param_estimate()
util_uniform_param_estimate()
util_cauchy_param_estimate()
tidy_t()
- Also add to plotting functions.tidy_mixture_density()
util_geometric_stats_tbl()
util_hypergeometric_stats_tbl()
util_logistic_stats_tbl()
util_lognormal_stats_tbl()
util_negative_binomial_stats_tbl()
util_normal_stats_tbl()
util_pareto_stats_tbl()
util_poisson_stats_tbl()
util_uniform_stats_tbl()
util_cauchy_stats_tbl()
util_t_stats_tbl()
util_f_stats_tbl()
util_chisquare_stats_tbl()
util_weibull_stats_tbl()
util_gamma_stats_tbl()
util_exponential_stats_tbl()
util_binomial_stats_tbl()
util_beta_stats_tbl()
p
calculation in tidy_poisson()
that will now produce the correct probability chart from the auto plot functions.p
calculation in tidy_hypergeometric()
that will no produce the correct probability chart from the auto plot functions.tidy_distribution_summary_tbl()
function did not take the output of tidy_multi_single_dist()
ggplot2::xlim(0, max_dy)
to ggplot2::ylim(0, max_dy)
q
columntidy_gamma()
parameter of .rate
to .scale Fix
tidy_autoplot_functions to incorporate this change. Fix
util_gamma_param_estimate()to say
scaleinstead of
rate` in the returned estimated parameters.None
.geom_smooth
is set to TRUE that ggplot2::xlim(0, max_dy)
is set.tidy_multi_single_dist()
failed on distribution with single parameter like tidy_poisson()
tidy_
distribution functions to add an attribute of either discrete or continuous that helps in the autoplot process.tidy_autoplot()
to use histogram or lines for density plot depending on if the distribution is discrete or continuous.tidy_multi_dist_autoplot()
to use histogram or lines for density plot depending on if the distribution is discrete or continuous.None
tidy_binomial()
tidy_geometric()
tidy_negative_binomial()
tidy_zero_truncated_poisson()
tidy_zero_truncated_geometric()
tidy_zero_truncated_binomial()
tidy_zero_truncated_negative_binomial()
tidy_pareto1()
tidy_pareto()
tidy_inverse_pareto()
tidy_random_walk()
tidy_random_walk_autoplot()
tidy_generalized_pareto()
tidy_paralogistic()
tidy_inverse_exponential()
tidy_inverse_gamma()
tidy_inverse_weibull()
tidy_burr()
tidy_inverse_burr()
tidy_inverse_normal()
tidy_generalized_beta()
tidy_multi_single_dist()
tidy_multi_dist_autoplot()
tidy_combine_distributions()
tidy_kurtosis_vec()
, tidy_skewness_vec()
, and tidy_range_statistic()
util_beta_param_estimate()
util_binomial_param_estimate()
util_exponential_param_estimate()
util_gamma_param_estimate()
util_geometric_param_estimate()
util_hypergeometric_param_estimate()
util_lognormal_param_estimate()
tidy_scale_zero_one_vec()
tidy_combined_autoplot()
util_logistic_param_estimate()
util_negative_binomial_param_estimate()
util_normal_param_estimate()
util_pareto_param_estimate()
util_poisson_param_estimate()
crayon
, rstudioapi
, and cli
from Suggests to Imports due to pillar
no longer importing..geom_rug
to tidy_autoplot()
function.geom_point
to tidy_autoplot()
function.geom_smooth
to tidy_autoplot()
function.geom_jitter
to tidy_autoplot()
functiontidy_autoplot()
for when the distribution is tidy_empirical()
the legend argument would fail.tidy_empirical()
_pkgdown.yml
file to update site.param_grid
, param_grid_txt
, and dist_with_params
to the attributes of all tidy_
distribution functions....
as a grouping parameter to tidy_distribution_summary_tbl()
dist_type
a factor for tidy_combine_distributions()
None
tidy_normal()
tidy_gamma()
tidy_beta()
tidy_poisson()
tidy_autoplot()
tidy_distribution_summary_tbl()
tidy_empirical()
tidy_uniform()
tidy_exponential()
tidy_logistic()
tidy_lognormal()
tidy_weibull()
tidy_chisquare()
tidy_cauchy()
tidy_hypergeometric()
tidy_f()
None
None
NEWS.md
file to track changes to the package.None
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.