The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
R Package of TSCI
library(MASS)
library(TSCI)
# set seeds for reproducibility
RNGkind("L'Ecuyer-CMRG")
set.seed(1)
# dimension
p <- 10
# sample size
n <- 1000
# interaction value
inter_val <- 1
# the IV strength
a <- 1
# violation strength
tau <- 1
f <- function(x) {a * (1 * sin(2 * pi * x) + 1.5 * cos(2 * pi * x))}
rho <- 0.5
Cov <- stats::toeplitz(rho^c(0 : p))
mu <- rep(0, p + 1)
# true effect
beta <- 1
alpha <- as.matrix(rep(-0.3, p))
gamma <- as.matrix(rep(0.2, p))
inter <- as.matrix(c(rep(inter_val, 5),rep(0, p - 5)))
# generate the data
mu_error <- rep(0,2)
Cov_error <- matrix(c(1, 0.5, 0.5,1), 2, 2)
Error <- MASS::mvrnorm(n, mu_error, Cov_error)
W_original <- MASS::mvrnorm(n, mu, Cov)
W <- pnorm(W_original)
# instrument variable
Z <- W[, 1]
# baseline covariates
X <- W[, -1]
# generate the treatment variable D
D <- f(Z) + X %*% alpha + Z * X %*% inter + Error[, 1]
# generate the outcome variable Y
Y <- D * beta + tau * Z + X %*% gamma + Error[, 2]
vio_space <- create_monomials(Z, 4, "monomials_main")
output_RF <- tsci_forest(Y = Y, D = D, Z = Z, X = X, vio_space = vio_space)
summary(output_RF)
output_BO <- tsci_boosting(Y = Y, D = D, Z = Z, X = X, vio_space = vio_space)
summary(output_BO)
output_PY <- tsci_poly(Y = Y, D = D, Z = Z, X = X)
summary(output_PY)
A <- cbind(1, Z, Z^2, Z^3, Z^4, X)
weight <- A %*% chol2inv(chol(t(A) %*% A)) %*% t(A)
output_UD <- tsci_secondstage(Y = Y, D = D, Z = Z, W = X, vio_space = vio_space, weight = weight)
summary(output_UD)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.