The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This vignette provides an overview of the “TLCAR” Package. The package TLCAR offers a powerful range of statistical tools for analysis,simulation, and computation based on the Topp-Leone Cauchy Rayleigh distribution (TLCAR). This distribution, which combines the properties of the Topp-Leone, Cauchy, and Rayleigh distributions,is particularly useful for modeling complex, heterogeneous data present in many scientific disciplines. With the “TLCAR” package, users can estimate the parameters of the TLCAR distribution from datasets, generate random samples according to this distribution, plot histograms and density functions, and calculate specific quantiles.
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
The TLCAR distribution is particularly useful for modeling data with heavy tails, skewness, and positive values. It is a versatile distribution that can handle diverse characteristics in the data.
The probability density function (PDF) for the TLCAR distribution is given by the formula:
\[ f(x;\nu)=\frac{2\alpha}{\pi a} \times \left[\frac{1+\left(\frac{x^2}{\theta^2}-1\right)e^{-\frac{x^2}{2\theta^2}}+m}{1+\left(\frac{x\left(1-e^{-\frac{x^2}{2\theta^2}}+m\right) -b}{a}\right)^2}\right] \times\left[\frac{1}{2}-\frac{1}{\pi}\arctan\frac{x\left(1-e^{-\frac{x^2}{2\theta^2}}+m\right) -b}{a}\right] \times \left[ 1-\left(\frac{1}{2}-\frac{1}{\pi}\arctan\frac{x\left(1-e^{-\frac{x^2}{2\theta^2}}+m\right)-b}{a}\right)^2\right]^{\alpha-1}\] where \(\alpha\) , \(a\) , \(\theta\) , \(m\) > 0 .
Let’s calculate the PDF for \(x=1\) , \(\alpha=1\) , \(a=1\) , \(b=0\) , \(\theta=2\) and \(m=1\)
## [1] 0.08801882
Let’s calculate the PDF for \(x=3\) , \(\alpha=2\) , \(a=1\) , \(b=2\) , \(\theta=2\) and \(m=4\)
## [1] 0.001247268
The cumulative distribution function (CDF) for the TLCAR distribution is given by the formula:
\[F(x;\nu)=\left[ 1-\left(\frac{1}{2}-\frac{1}{\pi}\arctan\frac{x\left(1-e^{-\frac{x^2}{2\theta^2}}+m\right) -b}{a}\right)^2\right]^\alpha \]
where \(\alpha\) , \(a\) , \(\theta\) , \(m\) > 0 .
Let’s calculate the CDF for \(x=1\) , \(\alpha=1\) , \(a=1\) , \(b=0\) , \(\theta=2\) and \(m=1\)
## [1] 0.9460113
Let’s calculate the CDF for \(x=3\) , \(\alpha=2\) , \(a=1\) , \(b=2\) , \(\theta=2\) and \(m=4\)
## [1] 0.9986058
This function generates a graphical plot of the probability density function (PDF) or cumulative distribution function (CDF) for the TLCAR distribution.
Let’s plot the PDF for a range of values with parameters \(\alpha=1\) , \(a=1\) , \(b=0\) , \(\theta=2\) and \(m=1\)
Let’s plot the CDF for a range of values with parameters \(\alpha=1\) , \(a=1\) , \(b=0\) , \(\theta=2\) and \(m=1\)
The quantile function calculates the quantile value for a given probability using the TLCAR distribution.
Let’s calculate the 0.5 quantile (median) using parameters \(\alpha=1\) , \(a=1\) , \(b=0\) ,\(\theta=2\) and \(m=1\)
## [1] -0.7166792
Let’s calculate the 0.75 quantile using parameters \(\alpha=2\) , \(a=2\) , \(b=1\) ,\(\theta=2\) and \(m=2\)
## [1] 0.9037692
This function generates random samples from the TLCAR distribution using the Box-Muller algorithm.
Let’s generate 25 random samples with parameters \(\alpha=1\) , \(a=1\) , \(b=0\) ,\(\theta=2\) and \(m=1\)
## [1] -0.7025289 -1.0591749 1.9324451 -0.3384789 2.0136376 0.8894991
## [7] -4.6530735 -0.6864125 -0.5854632 0.0678766 -0.7867331 -45.4280152
## [13] -1.6517409 -3.9558302 0.4378498 -16.5788655 -1.2367879 -2.1140315
## [19] 1.7325325 -3.9671058 -2.8861827 -1.5670429 -3.3882363 -10.3419322
## [25] 1.4776296
Let’s generate 50 random samples with parameters \(\alpha=2\) , \(a=2\) , \(b=1\) ,\(\theta=2\) and \(m=2\)
## [1] -0.3367058 1.7285812 1.1875268 0.4120580 1.0581625 0.3990519
## [7] 1.0071567 2.1849633 2.3598769 0.2319956 -0.5748939 1.0236759
## [13] 0.1246406 0.5529991 -1.2433635 0.3173053 -1.3641320 -0.7273208
## [19] 1.9033033 1.5304993 1.0602287 -0.6917317 0.6620348 1.3377633
## [25] 0.3161296 0.3535551 0.1526248 0.3199435 1.1434471 -1.5357639
## [31] 0.7347157 0.5214707 0.1937358 0.8818820 -0.8341408 0.8520853
## [37] 0.2262596 0.1394313 0.5857642 0.6400057 -1.3768247 -1.0428210
## [43] 0.8939435 0.5473589 -1.7624686 -0.6047640 -0.4882200 0.2529339
## [49] -2.8642775 -0.4241723
This function estimates the parameters of the TLCAR distribution while respecting constraints on the parameters.
Let’s estimate parameters from a sample data vector.
## [1] 3.017587 3.495700 13.258842 1.696800 1.000000
## [1] 3.447945 6.540533 26.392380 1.000000 1.000000
This function estimates parameters and plots the histogram of the data along with the estimated density curve.
This concludes the overview of the “TLCAR” package and its functionalities for working with the Topp-Leone Cauchy Rayleigh distribution.
Atchadé, M.N., Bogninou, M.J., Djibril, A.M. et al. Topp-Leone Cauchy Family of Distributions with Applications in Industrial Engineering. J Stat Theory Appl 22, 339–365 (2023). https://doi.org/10.1007/s44199-023-00066-4
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.