The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

User Guide to Package SurvivalClusteringTree

2024-05-23

packages

This vignette needs the following packages to run

library(SurvivalClusteringTree)
library(survival)
library(tidyverse)
library(WeightedCluster)

Simulation of data

We simulate a data set with 3 groups of 80 observations each. All of the group follow a Weibull distribution but with different shape and scale parameters. We simulate as well 3 continuous variables \(x_1\), \(x_2\) and \(x_3\) and 2 binaries variables \(z_1\) and \(z_2\).

set.seed(0)
simulated_data<-
  data.frame(label=rep(c("A","B","C"),c(80,80,80)))%>%
  mutate(
    time=case_when(
      label=="A"~rweibull(n(),shape=2,scale=2),
      label=="B"~rweibull(n(),shape=2,scale=5),
      label=="C"~rweibull(n(),shape=2,scale=3)),
    survtime=pmin(time,10),
    survevent=time<10)%>%
  select(-time)%>%
  mutate(
    x1=case_when(
      label=="A"~rnorm(n(),0),
      label=="B"~rnorm(n(),3),
      label=="C"~rnorm(n(),3)),
    x2=case_when(
      label=="A"~rnorm(n(),3),
      label=="B"~rnorm(n(),0),
      label=="C"~rnorm(n(),3)),
    x3=case_when(
      label=="A"~rnorm(n(),0),
      label=="B"~rnorm(n(),0),
      label=="C"~rnorm(n(),2)),
    z1=case_when(
      label=="A"~sample(c("F1","F2"),n(),replace=T,prob=c(0.8,0.2)),
      label=="B"~sample(c("F1","F2"),n(),replace=T,prob=c(0.5,0.5)),
      label=="C"~sample(c("F1","F2"),n(),replace=T,prob=c(0.2,0.8))),
    z2=case_when(
      label=="A"~sample(c("G1","G2"),n(),replace=T,prob=c(0.7,0.3)),
      label=="B"~sample(c("G1","G2"),n(),replace=T,prob=c(0.1,0.9)),
      label=="C"~sample(c("G2","G2"),n(),replace=T,prob=c(0.4,0.6))))

First, we fit a set of trees with the survival_forest function.

a_survival_forest<-
  survival_forest(
    survival_outcome=Surv(survtime,survevent)~1,
    numeric_predictor=~x1+x2+x3,
    factor_predictor=~z1+z2,
    data=simulated_data,
    nboot=100,
    min_weights=20)

We then compute the distance between the observation using the predict_distance_forest function.

a_distance<-predict_distance_forest(
  a_survival_forest,
  numeric_predictor=~x1+x2+x3,
  factor_predictor=~z1+z2,
  data=simulated_data)

Once the distances have been computed, it is possible to explore how the observatins are related to each other. In this example it appears that there are 3 large clusters which different strongly from each others.

a_dist<-as.dist(a_distance$mean_distance)
a_cmdscale_fit<-cmdscale(a_dist)

a_hclust<-hclust(a_dist,method="average")
a_dendrogram<-as.dendrogram(a_hclust)
plot(a_dendrogram)

Dendrogram

It is possible to identify the optimum number of clusters by identifying the cut off with the largest ASWw.

a_clustrange<-as.clustrange(a_hclust,diss=a_dist,ncluster=10)
df_ASWw<-data.frame(nclus=2:10,ASWw=a_clustrange$stats[,"ASWw"])
ggplot(df_ASWw,aes(x=nclus,y=ASWw))+geom_line()+geom_vline(xintercept=3,lty=2)+theme_bw()

Dendrogram

Finaly, it is possible to identify how the observations are similar and how does the clustering model performs.

result_data<-data.frame(
  x=a_cmdscale_fit[,1],
  y=a_cmdscale_fit[,2],
  truth=simulated_data$label,
  cluster=factor(cutree(a_hclust,3)))

gridExtra::grid.arrange(
  ggplot(result_data,aes(x=x,y=y,color=truth))+geom_point()+theme_bw(),
  ggplot(result_data,aes(x=x,y=y,color=cluster))+geom_point()+theme_bw(),ncol=2)

Dendrogram

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.