The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Surprisal Analysis Guidelines

Surprisal Analysis, an R package for information theoretic analysis of gene expression data

library(SurprisalAnalysis)
library(ggplot2)

Read data and apply Surprisal analysis

data <- read.csv(system.file("extdata", "helper_T_cell_0_test.csv", package = "SurprisalAnalysis"), header=TRUE)
results <- surprisal_analysis(data)
results[[2]]-> transcript_weights
percentile_GO <- 0.95 #change based on your preference
lambda_no <- 2 #change based on your preference, lambda #1 is the baseline state

Run GO analysis

GO.results <- GO_analysis_surprisal_analysis(transcript_weights, percentile_GO, lambda_no, key_type = "SYMBOL", flip = FALSE, species.db.str =  "org.Mm.eg.db", top_GO_terms=15)

The function GO_analysis_surprisal_analysis() runs Gene Ontology (GO) enrichment on the most influential transcripts from a chosen Surprisal pattern. Below are the input arguments: