The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: S-Type Ridge Regression
Version: 0.1.0
Description: Implements S-type ridge regression, a robust and multicollinearity-aware linear regression estimator that combines S-type robust weighting (via the 'Stype.est' package) with ridge penalization; automatically selects the ridge parameter using the 'ridgregextra' approach targeting a close to 1 variance inflation factor (VIF), and returns comprehensive outputs (coefficients, fitted values, residuals, mean squared error (MSE), etc.) with an easy x/y interface and optional user-supplied weights. See Sazak and Mutlu (2021) <doi:10.1080/03610918.2021.1928196>, Karadag et al. (2023) https://CRAN.R-project.org/package=ridgregextra and Sazak et al. (2025) https://CRAN.R-project.org/package=Stype.est.
License: MIT + file LICENSE
Encoding: UTF-8
Depends: R (≥ 4.0.0)
Imports: stats, mctest, isdals, ridgregextra, Stype.est
Suggests: knitr, rmarkdown
URL: https://github.com/filizkrdg/Styperidge.reg
BugReports: https://github.com/filizkrdg/Styperidge.reg/issues
RoxygenNote: 7.3.3
NeedsCompilation: no
Packaged: 2026-01-09 09:21:53 UTC; pc
Author: Filiz Karadag ORCID iD [cre], HakanSavas Sazak ORCID iD [aut], Olgun Aydin ORCID iD [aut]
Maintainer: Filiz Karadag <filiz.karadag@ege.edu.tr>
Repository: CRAN
Date/Publication: 2026-01-12 20:30:07 UTC

Weighted ridge regression

Description

Fits a ridge regression model with observation-specific weights. The weights can be supplied as a vector, data frame, or a square weight matrix. If a vector or data frame is supplied, it is internally converted to a diagonal weight matrix. In the example below, the weight vector W is generated from a Uniform(0, 1) distribution purely to illustrate how to call the function. In practice, users should provide weights that reflect the structure of their data.

Usage

Weightedridge.reg(x, y, W)

Arguments

x

Explanatory variables. A data.frame or matrix with observations in rows and predictors in columns.

y

Dependent variable. A numeric vector, data.frame, or matrix. For a univariate response, this should be a length-n vector or an n x 1 matrix.

W

Observation weights. Can be

  • a numeric vector of length n, or

  • a single-column data.frame of length n, or

  • an n x n weight matrix.

If W is a vector or data.frame, the function converts it to diag(W) internally.

Value

A list with the following components:

cc

Numeric scalar. The selected ridge parameter k.

beta

Numeric matrix (p x 1). Ridge regression coefficients on the standardized scale (no intercept).

betaor

Numeric matrix ((p+1) x 1). Coefficients on the original (unstandardized) scale, including the intercept in the first row.

e

Numeric matrix (n x 1). Residuals on the standardized scale (yr - yhat).

ew

Numeric matrix (n x 1). Weighted residuals (W^(1/2) %*% e).

yhat

Numeric matrix (n x 1). Fitted values on the standardized scale (xr %*% beta).

yhatw

Numeric matrix (n x 1). Fitted values in the weighted standardized space (xrw %*% beta).

yhator

Numeric matrix (n x 1). Fitted values on the original scale using betaor.

MSE

Numeric scalar. Mean squared error (MSE) computed from weighted residuals.

F

Numeric scalar. Overall model F statistic based on the weighted ANOVA decomposition.

sig

Numeric scalar. P-value associated with F.

varbeta

Numeric matrix (p x p). Estimated covariance matrix of beta on the standardized scale.

stdbeta

Numeric vector (length p). Standard errors of beta.

R2

Numeric scalar. Weighted coefficient of determination (R-squared).

R2adj

Numeric scalar. Adjusted weighted R-squared.

anovatable

A data.frame. ANOVA-style table with sums of squares, degrees of freedom, mean squares, F, and p-value.

confint

Numeric matrix (2 x p). Confidence intervals for beta; first row is lower, second row is upper.

Examples

## Example: Weighted ridge regression using the bodyfat data from isdals
library(isdals)
data(bodyfat)

## Explanatory variables (x) and response (y)
x <- bodyfat[ , -1]   # all columns except the first: predictors
y <- bodyfat[ ,  1]   # first column: response (body fat percentage)

## Generate observation weights uniformly on [0, 1]

n <- nrow(x)
W <- runif(n, min = 0, max = 1)

## Fit the weighted ridge regression model
fit <- Weightedridge.reg(x, y, W)

## Inspect some key outputs
fit$beta        # coefficients in the standardized scale
fit$betaor      # coefficients in the original scale (including intercept)
fit$R2          # R-squared
fit$R2adj       # Adjusted R-squared
fit$anovatable  # ANOVA table


Full regression results using the S-type robust ridge regression estimators

Description

Full regression results using the S-type robust ridge regression estimators

Usage

regstyperidge(x, y)

Arguments

x

Explanatory variables (data.frame, matrix)

y

Dependent variables (data.frame, vector)

Value

A list of lists

Examples

library("mctest")
x <- Hald[,-1]
y <- Hald[,1]
regstyperidge(x,y)

library(isdals)
data(bodyfat)
x <- bodyfat[,-1]
y <- bodyfat[,1]
regstyperidge(x,y)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.