Type: | Package |
Title: | S-Type Estimators |
Version: | 0.1.0 |
Description: | Implements the S-type estimators, novel robust estimators for general linear regression models, addressing challenges such as outlier contamination and leverage points. This package introduces robust regression techniques to provide a robust alternative to classical methods and includes diagnostic tools for assessing model fit and performance. The methodology is based on the study, "Comparison of the Robust Methods in the General Linear Regression Model" by Sazak and Mutlu (2023). This package is designed for statisticians and applied researchers seeking advanced tools for robust regression analysis. |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
Depends: | R (≥ 4.0.0) |
Imports: | datasets, stats |
Suggests: | knitr, rmarkdown |
URL: | https://github.com/filizkrdg/S-type.est |
BugReports: | https://github.com/filizkrdg/S-type.est/issues |
RoxygenNote: | 7.3.2 |
NeedsCompilation: | no |
Packaged: | 2025-08-25 13:04:52 UTC; pc |
Author: | Hakan Savas Sazak |
Maintainer: | Filiz Karadag <filiz.karadag@ege.edu.tr> |
Repository: | CRAN |
Date/Publication: | 2025-08-29 17:50:07 UTC |
Fit a regression model using the S-type estimators.
Description
This function fits a regression model using the S-type estimators.
Usage
regstype(y, x)
Arguments
y |
Dependent variables (Dataframe, vector). |
x |
Explanatory variables (Dataframe, matrix). |
Value
A list containing the model coefficients and diagnostics.
Examples
library(datasets)
data(airquality)
str(airquality)
cleanairquality=na.omit(airquality)
Y1=cleanairquality$Ozone
X1=cleanairquality$Temp
X2=cleanairquality$Wind
X3=cleanairquality$Solar.R
x=data.frame("X1"=X1,"X2"=X2,"X3"=X3)
y=data.frame("Y"=Y1)
regstype(y,x)
Weighted regression analysis.
Description
This function performs weighted regression analysis.
Usage
regweighteds(y, x, W)
Arguments
y |
Dependent variables (Dataframe, vector) |
x |
Explanatory variables (Dataframe, matrix) |
W |
A numeric vector of weights. |
Value
A list containing the regression model results.
Examples
library(datasets)
data(airquality)
str(airquality)
cleanairquality=na.omit(airquality)
Y1=cleanairquality$Ozone
X1=cleanairquality$Temp
X2=cleanairquality$Wind
X3=cleanairquality$Solar.R
x=data.frame("X1"=X1,"X2"=X2,"X3"=X3)
y=data.frame("Y"=Y1)
W=runif(111, min = 0, max = 1)
regweighteds(y,x,W)