The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

temporalBehaviour

2024-07-24

The temporalBehaviour() function allows computing wind speed and direction for a given location or set of locations along the lifespan of a tropical cyclone. It also allows to compute to compute three associated summary statistics: the maximum sustained wind speed (product="MSW"), the power dissipation index (product="PDI") and the duration of exposure to winds reaching defined speed thresholds along the life span of the cyclones (product="Exposure").

In the following example we use the test_dataset provided with the package to illustrate how cyclone track data can be used to compute and plot time series of wind speed and direction and how to compute summary statistics for specific locations, as described below.

Computing and plotting time series of wind speed and direction

We compute and plot time series of the speed and direction of winds generated by the topical cyclone Pam (2015) in two of the main cities of Vanuatu, Port Vila (longitude = 168.33, latitude = -17.73) and Luganville (longitude = 167.17, latitude = -15.53). The coordinates of the two locations of interest are provided in a data frame as follows:

df <- data.frame(x = c(168.33, 167.17), y = c(-17.73, -15.53))
rownames(df) <- c("Port_Vila", "Luganville")

The track data for Pam nearby Vanuatu are extracted as follows:

sds <- defStormsDataset()
## Warning in checkInputsdefStormsDataset(filename, sep, fields, basin, seasons, : No basin argument specified. StormR will work as expected
##              but cannot use basin filtering for speed-up when collecting data
## === Loading data  ===
## Open database... /private/var/folders/v1/6y176c8d2jz06qr8rd3jq_480000gn/T/RtmpSAC0zx/Rinst11d381788fbb5/StormR/extdata/test_dataset.nc opened
## Collecting data ...
## === DONE ===
st <- defStormsList(sds = sds, loi = "Vanuatu", names = "PAM", verbose = 0)
plotStorms(st)
points(df$x, df$y, pch = 3, col = c("blue", "red"))
text(df$x, df$y, labels = c("Port Vila", "Luganville"), pos = 2, col = c("blue", "red"), cex = 0.8)

Then the temporalBehaviour() function with the product = "TS" argument is used to compute time series. By default the temporal resolution of is set to 1 hour but can be changed using the tempRes argument. Here we set the temporal resolution to 30 min with tempRes=0.5 as follows:

TS <- temporalBehaviour(st, points = df, product = "TS", tempRes = 30, verbose = 0)

With the above specification the temporalBehaviour() function returns a list of two data frames (i.e., one for each location) with the wind speed (“speed”), direction (“direction”), indices of the observations and the date and time of the observation (“isoTimes”).

str(TS)
## List of 1
##  $ PAM:List of 2
##   ..$ Port_Vila :'data.frame':   115 obs. of  4 variables:
##   .. ..$ speed    : num [1:115] NA NA NA NA NA NA NA NA NA NA ...
##   .. ..$ direction: num [1:115] NA NA NA NA NA NA NA NA NA NA ...
##   .. ..$ indices  : chr [1:115] "28" "28.17" "28.33" "28.50" ...
##   .. ..$ isoTimes : chr [1:115] "2015-03-11 21:00:00" "2015-03-11 21:30:00" "2015-03-11 22:00:00" "2015-03-11 22:30:00" ...
##   ..$ Luganville:'data.frame':   115 obs. of  4 variables:
##   .. ..$ speed    : num [1:115] NA NA NA NA NA NA NA NA NA NA ...
##   .. ..$ direction: num [1:115] NA NA NA NA NA NA NA NA NA NA ...
##   .. ..$ indices  : chr [1:115] "28" "28.17" "28.33" "28.50" ...
##   .. ..$ isoTimes : chr [1:115] "2015-03-11 21:00:00" "2015-03-11 21:30:00" "2015-03-11 22:00:00" "2015-03-11 22:30:00" ...

We use the data frame and the plotTemporal() function to draw time series plots for wind speed and wind direction as follows:

plotTemporal(data=TS, storm="PAM")

plotTemporal(data=TS, storm="PAM", var='direction')

Maximum sustained wind speed for Port Vila and Luganville can be computed as follows:

max(TS$PAM$Port_Vila$speed, na.rm = TRUE)
## [1] 53.312
max(TS$PAM$Luganville$speed, na.rm = TRUE)
## [1] 22.112

Getting power dissipation index

The power dissipation index is computed using the product = "PDI" argument as follows:

PDI <- temporalBehaviour(st, points = df, product = "PDI", tempRes = 30, verbose = 0)
PDI
## $PAM
##     Port_Vila Luganville
## PDI  126105.2   20111.64

Getting duration of exposure

The duration of exposure is computed using the product = "Exposure" argument as follows:

exposure_SS <- temporalBehaviour(st, points = df, product = "Exposure", tempRes = 30, verbose = 0)
exposure_SS
## $PAM
##                       Port_Vila Luganville
## Min threshold: 18 m/s      1380        960
## Min threshold: 33 m/s       570          0
## Min threshold: 42 m/s       300          0
## Min threshold: 49 m/s       120          0
## Min threshold: 58 m/s         0          0
## Min threshold: 70 m/s         0          0

By default, the function returns the duration of exposure (in hours) to wind speeds above the thresholds used by the Saffir-Simpson hurricane wind scale (i.e., 18, 33, 42, 49, 58, and 70 \(m.s^{-1}\)). However, different thresholds can be set using the wind_threshold arguments. We can use the thresholds used by the Australian Bureau of Meteorology to rank tropical cyclones intensity as follow:

wt <- c(17.2, 24.4, 32.5, 44.2, 55.0)
exposure_BOM <- temporalBehaviour(st, points = df, product = "Exposure", tempRes = 30, windThreshold = wt, verbose = 0)
exposure_BOM
## $PAM
##                         Port_Vila Luganville
## Min threshold: 17.2 m/s      1440       1050
## Min threshold: 24.4 m/s       960          0
## Min threshold: 32.5 m/s       600          0
## Min threshold: 44.2 m/s       240          0
## Min threshold: 55 m/s           0          0

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.