The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This package provides functions for fitting split generalized linear models.
You can install the stable version on R CRAN.
install.packages("SplitGLM", dependencies = TRUE)
You can install the development version from GitHub
library(devtools)
::install_github("AnthonyChristidis/SplitGLM") devtools
# Required Libraries
library(mvnfast)
# Sigmoid function
<- function(t){
sigmoid return(exp(t)/(1+exp(t)))
}
# Data simulation
set.seed(1)
<- 50
n <- 2000
N <- 1000
p <- c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
beta.active # Parameters
<- 100
p.active <- c(beta.active[1:p.active], rep(0, p-p.active))
beta <- matrix(0, p, p)
Sigma 1:p.active, 1:p.active] <- 0.5
Sigma[diag(Sigma) <- 1
# Train data
<- rmvn(n, mu = rep(0, p), sigma = Sigma)
x.train <- sigmoid(x.train %*% beta)
prob.train <- rbinom(n, 1, prob.train)
y.train
# Test data
<- rmvn(N, mu = rep(0, p), sigma = Sigma)
x.test <- sigmoid(x.test %*% beta + offset)
prob.test <- rbinom(N, 1, prob.test)
y.test mean(y.test)
<- y.test==0
sp.sen.par
# SplitGLM - CV (Multiple Groups)
<- cv.SplitGLM(x.train, y.train,
split.out type="Logistic",
G=10, include_intercept=TRUE,
alpha_s=3/4,
n_lambda_sparsity=100, n_lambda_diversity=100,
tolerance=1e-3, max_iter=1e3,
n_folds=5,
active_set=FALSE,
full_diversity=TRUE,
n_threads=1)
# Coefficients
<- coef(split.out)
split.coef
# Predictions
<- predict(split.out, newx=x.test, type="prob")
split.prob
# Plot of output
plot(prob.test, split.prob, pch=20)
abline(h=0.5,v=0.5)
# MR
<- predict(split.out, newx=x.test, type="class")
split.class mean(abs(y.test-split.class))
This package is free and open source software, licensed under GPL (>= 2).
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.