The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
****
In this R package, a spatial dataset can be generated under the assumption that observations are collected from a two dimensional uniform grid consists of (m2) lattice points having unit distance between any two neighbouring points along the horizontal and vertical directions.
****
****
generation of spatial coordinates of locations
The size of the population is N= m2. The spatial coordinates of the locations of observations can be computed by the following expressions
( Latitudei, Longitudei )= ( mod(i-1,m), [(i-1)/m] ), i= 1,…, m2
where, mod(i-1,m) is the remainder of (i-1) divided by m and [(i-1)/m] is the integer part of the number (i-1)/m
generation of auxiliary variable from uniform distribution
X =runif(N,0,1)
error term drawn independently from normal distribution i.e. N(0,1)
e =rnorm(N, mean=0, sd=1)
generation of spatially varying regression coefficients
B0=(Latitudei+Longitudei)/6
B1=(Latitudei/3)
spatially varying regression model for generating the response variable
Yi = B0( Latitudei,Longitudei ) + B1( Latitudei,Longitudei )*Xi + ei ; i= 1,…, N
# Examples: generate an uniform two dimensional grid of lattice points
library(SpatialPOP)
=spatial_grid(c(1:5),c(1:5))
coord_grid=as.data.frame(coord_grid)
coord_gridnames(coord_grid)=cbind("x","y")
coord_grid
## x y
## 1 1 1
## 2 2 1
## 3 3 1
## 4 4 1
## 5 5 1
## 6 1 2
## 7 2 2
## 8 3 2
## 9 4 2
## 10 5 2
## 11 1 3
## 12 2 3
## 13 3 3
## 14 4 3
## 15 5 3
## 16 1 4
## 17 2 4
## 18 3 4
## 19 4 4
## 20 5 4
## 21 1 5
## 22 2 5
## 23 3 5
## 24 4 5
## 25 5 5
plot(coord_grid)
# Examples: simulated data along with spatial coordinates and spatially varying model parameters
library(SpatialPOP)
=spatial_grid(c(1:5),c(1:5))
coord_grid=as.data.frame(coord_grid)
coord_gridnames(coord_grid)=cbind("x","y")
coord_grid
## x y
## 1 1 1
## 2 2 1
## 3 3 1
## 4 4 1
## 5 5 1
## 6 1 2
## 7 2 2
## 8 3 2
## 9 4 2
## 10 5 2
## 11 1 3
## 12 2 3
## 13 3 3
## 14 4 3
## 15 5 3
## 16 1 4
## 17 2 4
## 18 3 4
## 19 4 4
## 20 5 4
## 21 1 5
## 22 2 5
## 23 3 5
## 24 4 5
## 25 5 5
<-nrow(coord_grid)
N N
## [1] 25
<-sqrt(nrow(coord_grid))
m m
## [1] 5
<-spatialPOP(25,5,c(1:5),c(1:5))
spatial_data spatial_data
## Y X latitude longitude B0 B1
## 1 1.26605154 0.006507932 0 0 0.0000000 0.0000000
## 2 1.91073017 0.831351819 1 0 0.1666667 0.3333333
## 3 1.77223415 0.775538277 2 0 0.3333333 0.6666667
## 4 0.98887579 0.030592480 3 0 0.5000000 1.0000000
## 5 1.93925956 0.299020177 4 0 0.6666667 1.3333333
## 6 -0.78809243 0.493949025 0 1 0.1666667 0.0000000
## 7 0.36148401 0.112926966 1 1 0.3333333 0.3333333
## 8 2.59411089 0.165608979 2 1 0.5000000 0.6666667
## 9 0.42654596 0.548260471 3 1 0.6666667 1.0000000
## 10 0.08807018 0.341807150 4 1 0.8333333 1.3333333
## 11 0.24545099 0.591042310 0 2 0.3333333 0.0000000
## 12 0.49500650 0.878522104 1 2 0.5000000 0.3333333
## 13 2.03860208 0.988028942 2 2 0.6666667 0.6666667
## 14 -0.02443551 0.128406113 3 2 0.8333333 1.0000000
## 15 0.89838614 0.274969956 4 2 1.0000000 1.3333333
## 16 0.90267101 0.718683174 0 3 0.5000000 0.0000000
## 17 -0.07287275 0.190991892 1 3 0.6666667 0.3333333
## 18 1.89283723 0.961637693 2 3 0.8333333 0.6666667
## 19 1.61050756 0.705824186 3 3 1.0000000 1.0000000
## 20 0.96746652 0.215200857 4 3 1.1666667 1.3333333
## 21 1.00901668 0.285288519 0 4 0.6666667 0.0000000
## 22 -1.41153583 0.371939152 1 4 0.8333333 0.3333333
## 23 0.96834603 0.480729702 2 4 1.0000000 0.6666667
## 24 2.78982231 0.310368277 3 4 1.1666667 1.0000000
## 25 0.37798502 0.623950482 4 4 1.3333333 1.3333333
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.