The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Capture the Dominant Spatial Pattern with Two-Dimensional Locations

Wen-Ting Wang

Objective

Represent how to use SpatPCA for two-dimensional data for capturing the most dominant spatial pattern

Basic settings

Used packages

library(SpatPCA)
library(ggplot2)

base_theme <- theme_minimal(base_size = 10, base_family = "Times") +
  theme(legend.position = "bottom")
fill_bar <- guides(fill = guide_colourbar(
    barwidth = 10,
    barheight = 0.5,
    label.position = "bottom")
  )
coltab <- with(
  list(),
  colorRampPalette(c("#3b4cc0", "#f7f7f7", "#b40426"))(128)
)
color_scale_limit <- c(-.8, .8)

Selected realizations are displayed as static images below. #### True spatial pattern (eigenfunction) - The underlying spatial pattern below indicates realizations will vary dramatically at the center and be almost unchanged at the both ends of the curve.

set.seed(1024)
p <- 25
n <- 8
location <-
  matrix(rep(seq(-5, 5, length = p), 2), nrow = p, ncol = 2)
expanded_location <- expand.grid(location[, 1], location[, 2])
unnormalized_eigen_fn <-
  as.vector(exp(-location[, 1] ^ 2) %*% t(exp(-location[, 2] ^ 2)))
true_eigen_fn <-
  unnormalized_eigen_fn / norm(t(unnormalized_eigen_fn), "F")

plot_df <- data.frame(
  location_dim1 = expanded_location[, 1],
  location_dim2 = expanded_location[, 2],
  eigenfunction = true_eigen_fn
)

ggplot(plot_df, aes(location_dim1, location_dim2)) +
  geom_tile(aes(fill = eigenfunction)) +
  scale_fill_gradientn(colours = coltab, limits = color_scale_limit) +
  base_theme +
  labs(title = "True Eigenfunction", fill = "") +
  fill_bar

Experiment

Generate 2-D realizations

realizations <- rnorm(n = n, sd = 3) %*% t(true_eigen_fn) + matrix(rnorm(n = n * p^2), n, p^2)

Animate realizations

realization_df <- data.frame(
  location_dim1 = expanded_location[, 1],
  location_dim2 = expanded_location[, 2],
  value = realizations[1, ]
)

ggplot(realization_df, aes(location_dim1, location_dim2)) +
  geom_tile(aes(fill = value)) +
  scale_fill_gradientn(colours = coltab, limits = c(-10, 10)) +
  base_theme +
  labs(title = "1st realization", fill = "") +
  fill_bar

Apply SpatPCA::spatpca

We add a candidate set of tau2 to see how SpatPCA obtain a localized smooth pattern.

tau2 <- c(0, exp(seq(log(10), log(400), length = 10)))
cv <- spatpca(x = expanded_location, Y = realizations, tau2 = tau2)
eigen_est <- cv$eigenfn

Compare SpatPCA with PCA

The following figure shows that SpatPCA can find sparser pattern than PCA, which is close to the true pattern.

plot_df <- data.frame(
  location_dim1 = expanded_location[, 1],
  location_dim2 = expanded_location[, 2],
  spatpca = eigen_est[, 1],
  pca = svd(realizations)$v[, 1]
)

plot_df_long <- rbind(
  data.frame(location_dim1 = plot_df$location_dim1,
             location_dim2 = plot_df$location_dim2,
             estimate = "spatpca",
             eigenfunction = plot_df$spatpca),
  data.frame(location_dim1 = plot_df$location_dim1,
             location_dim2 = plot_df$location_dim2,
             estimate = "pca",
             eigenfunction = plot_df$pca)
)

ggplot(plot_df_long, aes(location_dim1, location_dim2)) +
  geom_tile(aes(fill = eigenfunction)) +
  scale_fill_gradientn(colours = coltab, limits = color_scale_limit) +
  base_theme +
  facet_wrap(~estimate) +
  labs(fill = "") +
  fill_bar

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.