The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This script shows a toy example of usage of SparseFunClust (without alignment).
library(SparseFunClust)
set.seed(24032023)
<- 50
n <- seq(0,1,len=500)
x <- generate.data.FV17(n, x)
out <- out$data
data <- out$true.partition
trueClust matplot(x, t(data), type='l', col=trueClust,
xlab = 'x', ylab = 'data', main = 'Simulated data')
<- 2 # run with 2 groups only
K <- 'kmea' # version with K-means clustering
method <- FALSE # don't perform tuning of the sparsity parameter (faster)
tuning.m <- SparseFunClust(data, x, K = K, do.alignment = FALSE,
result clust.method = method, tuning.m = tuning.m)
table(trueClust,result$labels)
##
## trueClust 1 2
## 1 50 0
## 2 10 40
cer(trueClust,result$labels)
## [1] 0.1818182
matplot(x,t(data),type='l',lty=1,col=result$labels+1,ylab='',
main='clustering results')
lines(x,colMeans(data[which(result$labels==1),]),lwd=2)
lines(x,colMeans(data[which(result$labels==2),]),lwd=2)
plot(x,result$w,type='l',lty=1,lwd=2,ylab='',
main='estimated weighting function')
abline(v=0.5)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.