The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

toy-example

TOY EXAMPLE

This script shows a toy example of usage of SparseFunClust (without alignment).

Generate the data

library(SparseFunClust)
set.seed(24032023)
n <- 50
x <- seq(0,1,len=500)
out <- generate.data.FV17(n, x)
data <- out$data
trueClust <- out$true.partition
matplot(x, t(data), type='l', col=trueClust,
        xlab = 'x', ylab = 'data', main = 'Simulated data')

Run Sparse Functional Clustering (no alignment)

K <- 2            # run with 2 groups only
method <- 'kmea'  # version with K-means clustering
tuning.m <- FALSE # don't perform tuning of the sparsity parameter (faster)
result <- SparseFunClust(data, x, K = K, do.alignment = FALSE,
                         clust.method = method, tuning.m = tuning.m)

Plot / explore results

table(trueClust,result$labels)
##          
## trueClust  1  2
##         1 50  0
##         2 10 40
cer(trueClust,result$labels)
## [1] 0.1818182
matplot(x,t(data),type='l',lty=1,col=result$labels+1,ylab='',
        main='clustering results')
lines(x,colMeans(data[which(result$labels==1),]),lwd=2)
lines(x,colMeans(data[which(result$labels==2),]),lwd=2)

plot(x,result$w,type='l',lty=1,lwd=2,ylab='',
     main='estimated weighting function')
abline(v=0.5)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.