The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
In exploratory data analysis, it is common to want to make two
different plots for same variables. For example, a survey data may have
a large number of questions like age, gender, region etc. It includes
several categorical and numerical features. Suppose a analyst want to
see age variable distributions with gender and without gender in side by
side view. There is no direct functions available in any of the
statistical packages. Here is a way to achieve the same thing using R
using ggplot2 customized function ExpTwoPlots
Function definition:
ExpTwoPlots(
data,
plot_type = "numeric",
iv_variables = NULL,
target = NULL,
lp_geom_type = "boxplot",
lp_arg_list = list(),
rp_geom_type = "boxplot",
rp_arg_list = list(),
fname = NULL,
page = NULL,
theme = "Default"
)
Different use cases
target = "gear"
categorical_features <- c("vs", "carb") # we can add as many categorical variables
numeircal_features <- c("mpg", "qsec") # we can add as many numerical variablesnum_1 <- ExpTwoPlots(mtcars,
plot_type = "numeric",
iv_variables = numeircal_features,
target = NULL,
lp_arg_list = list(fill="orange"),
lp_geom_type = 'boxplot',
rp_arg_list = list(alpha=0.5, fill="white", color = "red", binwidth=1),
rp_geom_type = 'histogram',
page = c(2,1),
theme = "Default")
num_1## $`0`
num_2 <- ExpTwoPlots(mtcars,
plot_type = "numeric",
iv_variables = numeircal_features,
target = NULL,
lp_arg_list = list(fill = "white",color = "red", binwidth=1),
lp_geom_type = 'histogram',
rp_arg_list = list(alpha=0.5, fill="red"),
rp_geom_type = 'density',
page = c(2,1),
theme = "Default")
num_2## $`0`
num_3 <- ExpTwoPlots(mtcars,
plot_type = "numeric",
iv_variables = numeircal_features,
target = NULL,
lp_arg_list = list(color = "red"),
lp_geom_type = 'density',
rp_arg_list = list(fill="orange"),
rp_geom_type = 'boxplot',
page = c(2,1),
theme = "Default")
num_3## $`0`
num_4 <- ExpTwoPlots(mtcars,
plot_type = "numeric",
iv_variables = numeircal_features,
target = NULL,
lp_arg_list = list(fill = "blue"),
lp_geom_type = 'qqplot',
rp_arg_list = list(fill="orange"),
rp_geom_type = 'boxplot',
page = c(2,1),
theme = "Default")
num_4## $`0`
num_21 <- ExpTwoPlots(mtcars,
plot_type = "numeric",
iv_variables = numeircal_features,
target = "gear",
lp_arg_list = list(fill="pink"),
lp_geom_type = 'boxplot',
rp_arg_list = list(alpha=0.5, fill = c("grey", "orange", "lightblue"), binwidth=1),
rp_geom_type = 'histogram',
page = c(2,1),
theme = "Default")
num_21## $`0`
num_22 <- ExpTwoPlots(mtcars,
plot_type = "numeric",
iv_variables = numeircal_features,
target = "gear",
lp_arg_list = list(fill = "white",color = "red", binwidth=1),
lp_geom_type = 'histogram',
rp_arg_list = list(alpha=0.5, fill = c("red", "orange", "pink")),
rp_geom_type = 'density',
page = c(2,1),
theme = "Default")
num_22## $`0`
num_23 <- ExpTwoPlots(mtcars,
plot_type = "numeric",
iv_variables = numeircal_features,
target = "gear",
lp_arg_list = list(fill = "grey"),
lp_geom_type = 'density',
rp_arg_list = list(fill = c("blue", "orange", "pink"), alpha=0.5),
rp_geom_type = 'boxplot',
page = c(2,1),
theme = "Default")
num_23## $`0`
num_24 <- ExpTwoPlots(mtcars,
plot_type = "numeric",
iv_variables = numeircal_features,
target = "gear",
lp_arg_list = list(fill = "grey"),
lp_geom_type = 'qqplot',
rp_arg_list = list(fill = c("blue", "orange", "pink"), alpha=0.5),
rp_geom_type = 'density',
page = c(2,1),
theme = "Default")
num_24## $`0`
num_25 <- ExpTwoPlots(mtcars,
plot_type = "numeric",
iv_variables = numeircal_features,
target = "gear",
lp_arg_list = list(fill = "orange"),
lp_geom_type = 'boxplot',
rp_arg_list = list(fill = c("blue", "green", "red"), alpha=0.5),
rp_geom_type = 'qqplot',
page = c(2,1),
theme = "Default")
num_25## $`0`
cat_1 <- ExpTwoPlots(mtcars,
plot_type = "categorical",
iv_variables = categorical_features,
target = NULL,
lp_arg_list = list(),
lp_geom_type = 'donut',
rp_arg_list = list(stat = 'identity'),
rp_geom_type = 'bar',
page = c(2,1),
theme = "Default")
cat_1## $`0`
cat_2 <- ExpTwoPlots(mtcars,
plot_type = "categorical",
iv_variables = categorical_features,
target = NULL,
lp_arg_list = list(),
lp_geom_type = 'donut',
rp_arg_list = list(),
rp_geom_type = 'pie',
page = c(2,1),
theme = "Default")
cat_2## $`0`
cat_3 <- ExpTwoPlots(mtcars,
plot_type = "categorical",
iv_variables = categorical_features,
target = NULL,
lp_arg_list = list(stat = 'identity'),
lp_geom_type = 'barh',
rp_arg_list = list(),
rp_geom_type = 'pie',
page = c(2,1),
theme = "Default")
cat_3## $`0`
cat_41 <- ExpTwoPlots(mtcars,
plot_type = "categorical",
iv_variables = categorical_features,
target = 'gear',
lp_arg_list = list(),
lp_geom_type = 'donut',
rp_arg_list = list(stat = 'identity'),
rp_geom_type = 'bar',
page = c(2,1),
theme = "Default")
cat_41## $`0`
cat_42 <- ExpTwoPlots(mtcars,
plot_type = "categorical",
iv_variables = categorical_features,
target = 'gear',
lp_arg_list = list(),
lp_geom_type = 'pie',
rp_arg_list = list(stat = 'identity'),
rp_geom_type = 'barh',
page = c(2,1),
theme = "Default")
cat_42## $`0`
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.