The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The document introduces the SmartEDA package and how it can help you to build exploratory data analysis.
SmartEDA includes multiple custom functions to perform initial exploratory analysis on any input data describing the structure and the relationships present in the data. The generated output can be obtained in both summary and graphical form. The graphical form or charts can also be exported as reports.
सर्वस्य लोचनं शास्त्रं
Science is the only eye
अनेकसंशयोच्छेदि, परोक्षार्थस्य दर्शक|
सर्वस्य लोचनं शास्त्रं, यस्य नास्त्यन्ध एव सः ||
It blasts many doubts, foresees what is not obvious |
Science is the eye of everyone, one who hasnt got it, is like a blind ||
SmartEDA package helps you to construct a good base of data understanding. The capabilities and functionalities are listed below
SmartEDA package will make you capable of applying different types of EDA without having to
No need to categorize the variables into Character, Numeric, Factor etc. SmartEDA functions automatically categorize all the features into the right data type (Character, Numeric, Factor etc.) based on the input data.
ggplot2 functions are used for graphical presentation of data
Rmarkdown and knitr functions were used for build HTML reports
To summarize, SmartEDA package helps in getting the complete exploratory data analysis just by running the function instead of writing lengthy r code.
In this vignette, we will be using a simulated data set containing sales of child car seats at 400 different stores.
Data Source ISLR package.
Install the package “ISLR” to get the example data set.
#install.packages("ISLR")
library("ISLR")
#install.packages("SmartEDA")
library("SmartEDA")
## Load sample dataset from ISLR pacakge
= ISLR::Carseats Carseats
Understanding the dimensions of the dataset, variable names, overall missing summary and data types of each variables
# Overview of the data - Type = 1
ExpData(data=Carseats,type=1)
# Structure of the data - Type = 2
ExpData(data=Carseats,type=2)
Descriptions | Value |
---|---|
Sample size (nrow) | 400 |
No. of variables (ncol) | 11 |
No. of numeric/interger variables | 8 |
No. of factor variables | 3 |
No. of text variables | 0 |
No. of logical variables | 0 |
No. of identifier variables | 0 |
No. of date variables | 0 |
No. of zero variance variables (uniform) | 0 |
%. of variables having complete cases | 100% (11) |
%. of variables having >0% and <50% missing cases | 0% (0) |
%. of variables having >=50% and <90% missing cases | 0% (0) |
%. of variables having >=90% missing cases | 0% (0) |
Index | Variable_Name | Variable_Type | Sample_n | Missing_Count | Per_of_Missing | No_of_distinct_values |
---|---|---|---|---|---|---|
1 | Sales | numeric | 400 | 0 | 0 | 336 |
2 | CompPrice | numeric | 400 | 0 | 0 | 73 |
3 | Income | numeric | 400 | 0 | 0 | 98 |
4 | Advertising | numeric | 400 | 0 | 0 | 28 |
5 | Population | numeric | 400 | 0 | 0 | 275 |
6 | Price | numeric | 400 | 0 | 0 | 101 |
7 | ShelveLoc | factor | 400 | 0 | 0 | 3 |
8 | Age | numeric | 400 | 0 | 0 | 56 |
9 | Education | numeric | 400 | 0 | 0 | 9 |
10 | Urban | factor | 400 | 0 | 0 | 2 |
11 | US | factor | 400 | 0 | 0 | 2 |
# Metadata Information with additional statistics like mean, median and variance
ExpData(data=Carseats,type=2, fun = c("mean", "median", "var"))
Index | Variable_Name | Variable_Type | Sample_n | Missing_Count | Per_of_Missing | No_of_distinct_values | mean | median | var |
---|---|---|---|---|---|---|---|---|---|
1 | Sales | numeric | 400 | 0 | 0 | 336 | 7.50 | 7.49 | 7.98 |
2 | CompPrice | numeric | 400 | 0 | 0 | 73 | 124.97 | 125.00 | 235.15 |
3 | Income | numeric | 400 | 0 | 0 | 98 | 68.66 | 69.00 | 783.22 |
4 | Advertising | numeric | 400 | 0 | 0 | 28 | 6.64 | 5.00 | 44.23 |
5 | Population | numeric | 400 | 0 | 0 | 275 | 264.84 | 272.00 | 21719.81 |
6 | Price | numeric | 400 | 0 | 0 | 101 | 115.80 | 117.00 | 560.58 |
7 | ShelveLoc | factor | 400 | 0 | 0 | 3 | NA | NA | NA |
8 | Age | numeric | 400 | 0 | 0 | 56 | 53.32 | 54.50 | 262.45 |
9 | Education | numeric | 400 | 0 | 0 | 9 | 13.90 | 14.00 | 6.87 |
10 | Urban | factor | 400 | 0 | 0 | 2 | NA | NA | NA |
11 | US | factor | 400 | 0 | 0 | 2 | NA | NA | NA |
# Derive Quantile
= function(x){
quantile_10 = quantile(x, na.rm = TRUE, 0.1)
quantile_10
}
= function(x){
quantile_90 = quantile(x, na.rm = TRUE, 0.9)
quantile_90
}
<- ExpData(data=Carseats, type=2, fun=c("quantile_10", "quantile_90")) output_e1
Index | Variable_Name | Variable_Type | Sample_n | Missing_Count | Per_of_Missing | No_of_distinct_values | quantile_10 | quantile_90 |
---|---|---|---|---|---|---|---|---|
1 | Sales | numeric | 400 | 0 | 0 | 336 | 4.12 | 11.3 |
2 | CompPrice | numeric | 400 | 0 | 0 | 73 | 106.00 | 145.0 |
3 | Income | numeric | 400 | 0 | 0 | 98 | 30.00 | 107.0 |
4 | Advertising | numeric | 400 | 0 | 0 | 28 | 0.00 | 16.0 |
5 | Population | numeric | 400 | 0 | 0 | 275 | 58.90 | 467.0 |
6 | Price | numeric | 400 | 0 | 0 | 101 | 87.00 | 146.0 |
7 | ShelveLoc | factor | 400 | 0 | 0 | 3 | NA | NA |
8 | Age | numeric | 400 | 0 | 0 | 56 | 30.00 | 76.0 |
9 | Education | numeric | 400 | 0 | 0 | 9 | 10.00 | 17.1 |
10 | Urban | factor | 400 | 0 | 0 | 2 | NA | NA |
11 | US | factor | 400 | 0 | 0 | 2 | NA | NA |
This function shows the EDA output for 3 different cases
Summary of all numerical variables
ExpNumStat(Carseats,by="A",gp=NULL,Qnt=seq(0,1,0.1),MesofShape=2,Outlier=TRUE,round=2,Nlim=10)
= ISLR::Carseats
carseat ## Compute random weight
$wt = stats::runif( nrow(carseat), 0.5, 1.5 )
carseat= ExpNumStat(carseat,by="A",gp=NULL,round=2,Nlim=10, weight = "wt")
wt_summary c("Vname","TN","W_count","mean", "W_Mean", "SD","W_Sd")] wt_summary[,
## Vname TN W_count mean W_Mean SD W_Sd
## 4 Advertising 400 403.38 6.64 6.58 6.65 6.62
## 7 Age 400 403.38 53.32 53.60 16.20 16.23
## 2 CompPrice 400 403.38 124.97 125.01 15.33 15.39
## 3 Income 400 403.38 68.66 68.14 27.99 28.22
## 5 Population 400 403.38 264.84 265.13 147.38 145.64
## 6 Price 400 403.38 115.80 115.69 23.68 23.22
## 1 Sales 400 403.38 7.50 7.48 2.82 2.80
## With group by statement
= ExpNumStat(carseat,by="GA",gp="ShelveLoc",round=2,Nlim=10, weight = "wt")
wt_summary c("Vname","Group","TN","W_count","mean", "W_Mean", "SD","W_Sd")] wt_summary[,
## Vname Group TN W_count mean W_Mean SD W_Sd
## 4 Advertising ShelveLoc:All 400 403.38 6.64 6.58 6.65 6.62
## 11 Advertising ShelveLoc:Bad 96 97.55 6.22 6.08 6.46 6.31
## 18 Advertising ShelveLoc:Good 85 81.12 7.35 7.53 6.80 6.95
## 25 Advertising ShelveLoc:Medium 219 224.71 6.54 6.46 6.68 6.62
## 7 Age ShelveLoc:All 400 403.38 53.32 53.60 16.20 16.23
## 14 Age ShelveLoc:Bad 96 97.55 52.05 52.03 17.41 17.32
## 21 Age ShelveLoc:Good 85 81.12 52.61 53.18 15.43 15.56
## 28 Age ShelveLoc:Medium 219 224.71 54.16 54.44 15.97 15.99
## 2 CompPrice ShelveLoc:All 400 403.38 124.97 125.01 15.33 15.39
## 9 CompPrice ShelveLoc:Bad 96 97.55 124.01 124.15 15.18 15.32
## 16 CompPrice ShelveLoc:Good 85 81.12 125.75 125.85 14.98 14.98
## 23 CompPrice ShelveLoc:Medium 219 224.71 125.10 125.09 15.58 15.62
## 3 Income ShelveLoc:All 400 403.38 68.66 68.14 27.99 28.22
## 10 Income ShelveLoc:Bad 96 97.55 72.24 72.86 26.91 27.65
## 17 Income ShelveLoc:Good 85 81.12 67.98 66.39 28.31 27.80
## 24 Income ShelveLoc:Medium 219 224.71 67.35 66.73 28.31 28.51
## 5 Population ShelveLoc:All 400 403.38 264.84 265.13 147.38 145.64
## 12 Population ShelveLoc:Bad 96 97.55 275.29 273.45 147.23 144.95
## 19 Population ShelveLoc:Good 85 81.12 267.05 272.08 127.25 128.14
## 26 Population ShelveLoc:Medium 219 224.71 259.40 259.01 154.88 152.05
## 6 Price ShelveLoc:All 400 403.38 115.80 115.69 23.68 23.22
## 13 Price ShelveLoc:Bad 96 97.55 114.27 114.14 23.78 23.22
## 20 Price ShelveLoc:Good 85 81.12 117.88 117.14 25.13 24.69
## 27 Price ShelveLoc:Medium 219 224.71 115.65 115.84 23.10 22.75
## 1 Sales ShelveLoc:All 400 403.38 7.50 7.48 2.82 2.80
## 8 Sales ShelveLoc:Bad 96 97.55 5.52 5.58 2.36 2.37
## 15 Sales ShelveLoc:Good 85 81.12 10.21 10.30 2.50 2.43
## 22 Sales ShelveLoc:Medium 219 224.71 7.31 7.29 2.27 2.25
Graphical representation of all numeric features
# Note: Variable excluded (if unique value of variable which is less than or eaual to 10 [nlim=10])
<- ExpNumViz(Carseats,target=NULL,nlim=10,Page=c(2,2),sample=4)
plot1 1]] plot1[[
ExpCTable(Carseats,Target=NULL,margin=1,clim=10,nlim=3,round=2,bin=NULL,per=T)
Variable | Valid | Frequency | Percent | CumPercent |
---|---|---|---|---|
ShelveLoc | Bad | 96 | 24.00 | 24.00 |
ShelveLoc | Good | 85 | 21.25 | 45.25 |
ShelveLoc | Medium | 219 | 54.75 | 100.00 |
ShelveLoc | TOTAL | 400 | NA | NA |
Urban | No | 118 | 29.50 | 29.50 |
Urban | Yes | 282 | 70.50 | 100.00 |
Urban | TOTAL | 400 | NA | NA |
US | No | 142 | 35.50 | 35.50 |
US | Yes | 258 | 64.50 | 100.00 |
US | TOTAL | 400 | NA | NA |
NA
is Not Applicable
<- ExpCatViz(Carseats,target=NULL,col ="slateblue4",clim=10,margin=2,Page = c(2,2),sample=4)
plot2 1]] plot2[[
Summary of continuous dependent variable
summary(Carseats[,"Price"])
## Price
## Min. : 24.0
## 1st Qu.:100.0
## Median :117.0
## Mean :115.8
## 3rd Qu.:131.0
## Max. :191.0
Summary statistics when dependent variable is continuous Price.
ExpNumStat(Carseats,by="A",gp="Price",Qnt=seq(0,1,0.1),MesofShape=1,Outlier=TRUE,round=2)
If Target variable is continuous, summary statistics will add the correlation column (Correlation between Target variable vs all independent variables)
Graphical representation of all numeric variables
Scatter plot between all numeric variables and target variable Price. This plot help to examine how well a target variable is correlated with dependent variables.
Dependent variable is Price (continuous).
#Note: sample=8 means randomly selected 8 scatter plots
#Note: nlim=4 means included numeric variable with unique value is more than 4
<- ExpNumViz(Carseats,target="Price",nlim=4,scatter=FALSE,fname=NULL,col="green",Page=c(2,2),sample=8)
plot3 1]] plot3[[
#Note: sample=8 means randomly selected 8 scatter plots
#Note: nlim=4 means included numeric variable with unique value is more than 4
<- ExpNumViz(Carseats,target="US",nlim=4,scatter=TRUE,fname=NULL,Page=c(2,1),sample=4)
plot31 1]] plot31[[
Summary of categorical variables
##bin=4, descretized 4 categories based on quantiles
ExpCTable(Carseats,Target="Price",margin=1,clim=10,round=2,bin=4,per=F)
= ISLR::Carseats
carseat ## Compute random weight
$wt = stats::runif( nrow(carseat), 0.5, 1.5 )
carseat= ExpCTable(carseat,margin=1,clim=10,round=2,bin=4,per=F, weight = "wt")
wt_summary wt_summary
## Variable Valid Frequency Percent CumPercent
## 1 ShelveLoc Bad 91 23.04 23.04
## 2 ShelveLoc Good 85 21.57 44.61
## 3 ShelveLoc Medium 219 55.40 100.01
## 4 ShelveLoc TOTAL 395 NA NA
## 5 Urban No 118 29.83 29.83
## 6 Urban Yes 278 70.17 100.00
## 7 Urban TOTAL 396 NA NA
## 8 US No 141 35.68 35.68
## 9 US Yes 255 64.32 100.00
## 10 US TOTAL 396 NA NA
## 11 Education 10 45 11.40 11.40
## 12 Education 11 47 11.82 23.22
## 13 Education 12 46 11.65 34.87
## 14 Education 13 42 10.52 45.39
## 15 Education 14 42 10.50 55.89
## 16 Education 15 36 9.10 64.99
## 17 Education 16 48 12.11 77.10
## 18 Education 17 49 12.49 89.59
## 19 Education 18 41 10.41 100.00
## 20 Education TOTAL 396 NA NA
Urban | Frequency | Descriptions |
---|---|---|
No | 118 | Store location |
Yes | 282 | Store location |
Summary of all numeric variables
ExpNumStat(Carseats,by="GA",gp="Urban",Qnt=seq(0,1,0.1),MesofShape=2,Outlier=TRUE,round=2)
Boxplot for all the numeric attributes by each category of Urban
<- ExpNumViz(Carseats,target="Urban",type=1,nlim=3,fname=NULL,col=c("darkgreen","springgreen3","springgreen1"),Page=c(2,2),sample=8)
plot4 1]] plot4[[
Cross tabulation with target variable
ExpCTable(Carseats,Target="Urban",margin=1,clim=10,nlim=3,round=2,bin=NULL,per=F)
VARIABLE | CATEGORY | Urban:No | Urban:Yes | TOTAL |
---|---|---|---|---|
ShelveLoc | Bad | 22 | 74 | 96 |
ShelveLoc | Good | 28 | 57 | 85 |
ShelveLoc | Medium | 68 | 151 | 219 |
ShelveLoc | TOTAL | 118 | 282 | 400 |
US | No | 46 | 96 | 142 |
US | Yes | 72 | 186 | 258 |
US | TOTAL | 118 | 282 | 400 |
Information Value
ExpCatStat(Carseats,Target="Urban",result = "IV",clim=10,nlim=5,bins=10,Pclass="Yes",plot=FALSE,top=20,Round=2)
Variable | Class | Out_1 | Out_0 | TOTAL | Per_1 | Per_0 | Odds | WOE | IV | Ref_1 | Ref_0 | Target |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ShelveLoc.1 | Bad | 74 | 22 | 96 | 0.26 | 0.19 | 1.55 | 0.31 | 0.02 | Yes | No | Urban |
ShelveLoc.2 | Good | 57 | 28 | 85 | 0.20 | 0.24 | 0.81 | -0.19 | 0.01 | Yes | No | Urban |
ShelveLoc.3 | Medium | 151 | 68 | 219 | 0.54 | 0.58 | 0.85 | -0.07 | 0.00 | Yes | No | Urban |
US.1 | No | 96 | 46 | 142 | 0.34 | 0.39 | 0.81 | -0.14 | 0.01 | Yes | No | Urban |
US.2 | Yes | 186 | 72 | 258 | 0.66 | 0.61 | 1.24 | 0.08 | 0.00 | Yes | No | Urban |
Sales.1 | [0,4.11] | 29 | 11 | 40 | 0.10 | 0.09 | 1.11 | 0.10 | 0.00 | Yes | No | Urban |
Sales.2 | (4.11,5.05] | 29 | 11 | 40 | 0.10 | 0.09 | 1.11 | 0.10 | 0.00 | Yes | No | Urban |
Sales.3 | (5.05,5.86] | 26 | 14 | 40 | 0.09 | 0.12 | 0.75 | -0.29 | 0.01 | Yes | No | Urban |
Sales.4 | (5.86,6.59] | 30 | 10 | 40 | 0.11 | 0.08 | 1.29 | 0.32 | 0.01 | Yes | No | Urban |
Sales.5 | (6.59,7.49] | 32 | 9 | 41 | 0.11 | 0.08 | 1.55 | 0.32 | 0.01 | Yes | No | Urban |
Sales.6 | (7.49,8.07] | 30 | 9 | 39 | 0.11 | 0.08 | 1.44 | 0.32 | 0.01 | Yes | No | Urban |
Sales.7 | (8.07,8.8] | 24 | 16 | 40 | 0.09 | 0.14 | 0.59 | -0.45 | 0.02 | Yes | No | Urban |
Sales.8 | (8.8,9.71] | 26 | 14 | 40 | 0.09 | 0.12 | 0.75 | -0.29 | 0.01 | Yes | No | Urban |
Sales.9 | (9.71,11.28] | 26 | 14 | 40 | 0.09 | 0.12 | 0.75 | -0.29 | 0.01 | Yes | No | Urban |
Sales.10 | (11.28,16.27] | 30 | 10 | 40 | 0.11 | 0.08 | 1.29 | 0.32 | 0.01 | Yes | No | Urban |
Statistical test
<- ExpCatStat(Carseats,Target="Urban",result = "Stat",clim=10,nlim=5,bins=10,Pclass="Yes",plot=FALSE,top=20,Round=2) et4
Variable | Target | Unique | Chi-squared | p-value | df | IV Value | Cramers V | Degree of Association | Predictive Power |
---|---|---|---|---|---|---|---|---|---|
ShelveLoc | Urban | 3 | 2.738 | 0.258 | NA | 0.03 | 0.08 | Very Weak | Not Predictive |
US | Urban | 2 | 0.887 | 0.362 | NA | 0.01 | 0.05 | Very Weak | Not Predictive |
Sales | Urban | 10 | 6.696 | 0.676 | NA | 0.09 | 0.13 | Weak | Somewhat Predictive |
CompPrice | Urban | 10 | 4.543 | 0.885 | NA | 0.03 | 0.11 | Weak | Not Predictive |
Income | Urban | 10 | 8.428 | 0.495 | NA | 0.08 | 0.15 | Weak | Not Predictive |
Advertising | Urban | 7 | 5.565 | 0.473 | NA | 0.06 | 0.12 | Weak | Not Predictive |
Population | Urban | 10 | 10.560 | 0.295 | NA | 0.14 | 0.16 | Weak | Somewhat Predictive |
Price | Urban | 10 | 11.143 | 0.269 | NA | 0.14 | 0.17 | Weak | Somewhat Predictive |
Age | Urban | 10 | 8.414 | 0.508 | NA | 0.08 | 0.15 | Weak | Not Predictive |
Education | Urban | 8 | 5.122 | 0.653 | NA | 0.05 | 0.11 | Weak | Not Predictive |
Variable importance based on Information value
<- ExpCatStat(Carseats,Target="Urban",result = "Stat",clim=10,nlim=5,bins=10,Pclass="Yes",plot=TRUE,top=10,Round=2) varimp
Stacked bar plot with vertical or horizontal bars for all categorical variables
<- ExpCatViz(Carseats,target="Urban",fname=NULL,clim=5,col=c("slateblue4","slateblue1"),margin=2,Page = c(2,1),sample=2)
plot5 1]] plot5[[
Function definition:
ExpOutQQ (data,nlim=3,fname=NULL,Page=NULL,sample=NULL)
data : Input dataframe or data.table
nlim : numeric variable limit
fname : output file name (Output will be in PDF format)
Page : output pattern. if Page=c(3,2), It will generate 6 plots with 3 rows and 2 columns
sample : random number of plots
Carseats data from ISLR package:
options(width = 150)
= ISLR::Carseats
CData <- ExpOutQQ(CData,nlim=10,fname=NULL,Page=c(2,2),sample=4)
qqp 1]] qqp[[
Function definition:
ExpParcoord (data,Group=NULL,Stsize=NULL,Nvar=NULL,Cvar=NULL,scale=NULL)
data : Input dataframe or data.table
Group : stratification variables
Stsize : vector of startum sample sizes
Nvar : vector of numerice variables, default it will consider all the numeric variable from data
Cvar : vector of categorical variables, default it will consider all the categorical variable
scale : scale the variables in the parallel coordinate plot[Default normailized with minimum of the variable is zero and maximum of the variable is one]
ExpParcoord(CData,Group=NULL,Stsize=NULL,Nvar=c("Price","Income","Advertising","Population","Age","Education"))
ExpParcoord(CData,Group="ShelveLoc",Stsize=c(10,15,20),Nvar=c("Price","Income"),Cvar=c("Urban","US"))
ExpParcoord(CData,Group="ShelveLoc",Nvar=c("Price","Income"),Cvar=c("Urban","US"),scale=NULL)
std: univariately, subtract mean and divide by standard deviation
ExpParcoord(CData,Group="US",Nvar=c("Price","Income"),Cvar=c("ShelveLoc"),scale="std")
ExpParcoord(CData,Group="ShelveLoc",Stsize=c(10,15,20),Nvar=c("Price","Income","Advertising","Population","Age","Education"))
ExpParcoord(CData,Group="US",Stsize=c(15,50),Cvar=c("ShelveLoc","Urban"))
Used ‘data.table’ package functions
Function definition:
ExpCustomStat(data,Cvar=NULL,Nvar=NULL,stat=NULL,gpby=TRUE,filt=NULL,dcast=FALSE)
ExpCustomStat examples
ExpCustomStat(Carseats,Cvar="Urban",Nvar=c("Age","Price"),stat=c("mean","count"),gpby=TRUE,dcast=F)
Urban | Attribute | mean | count |
---|---|---|---|
Yes | Age | 53.62057 | 282 |
No | Age | 52.61017 | 118 |
Yes | Price | 116.51418 | 282 |
No | Price | 114.07627 | 118 |
ExpCustomStat(Carseats,Cvar="Urban",Nvar=c("Age","Price"),stat=c("mean","count"),gpby=TRUE,dcast=T)
Attribute | mean_No | mean_Yes | count_No | count_Yes |
---|---|---|---|---|
Age | 52.61017 | 53.62057 | 118 | 282 |
Price | 114.07627 | 116.51418 | 118 | 282 |
ExpCustomStat(Carseats,Cvar=c("Urban","ShelveLoc"),Nvar=c("Age","Price","Advertising","Sales"),stat=c("mean"),gpby=FALSE,dcast=T)
Attribute | ShelveLoc_Bad | ShelveLoc_Good | ShelveLoc_Medium | Urban_No | Urban_Yes |
---|---|---|---|---|---|
Advertising | 6.218750 | 7.352941 | 6.538813 | 6.203390 | 6.815603 |
Age | 52.052083 | 52.611765 | 54.155251 | 52.610169 | 53.620567 |
Price | 114.270833 | 117.882353 | 115.652968 | 114.076271 | 116.514184 |
Sales | 5.522917 | 10.214000 | 7.306575 | 7.563559 | 7.468191 |
In statistics, an outlier is a data point that differs significantly from other observations. An outlier may be due to variability in the measurement or it may indicate experimental error; the latter are sometimes excluded from the data set.An outlier can cause serious problems in statistical analyses.
Function ExpOutliers
can run univariate outlier analysis
based on boxplot or SD method. The function returns the summary of
oultlier for selected numeric features and adding new features if there
are any outlers
Identifying outliers: There are several methods we can use to
identify outliers. In ExpOutliers
used two methods (1)
Boxplot and (2) Standard Deviation
ExpOutliers(Carseats, varlist = c("Sales","CompPrice","Income"), method = "boxplot", treatment = "mean", capping = c(0.1, 0.9))
Summary
Category | Sales | CompPrice | Income |
---|---|---|---|
Lower cap : 0.1 | 4.119 | 106 | 30 |
Upper cap : 0.9 | 11.3 | 145 | 107 |
Lower bound | -0.5 | 85 | -29.62 |
Upper bound | 15.21 | 165 | 163.38 |
Num of outliers | 2 | 2 | 0 |
Lower outlier case | 43 | ||
Upper outlier case | 317,377 | 311 | |
Mean before | 7.5 | 124.97 | 68.66 |
Mean after | 7.45 | 124.97 | 68.66 |
Median before | 7.49 | 125 | 69 |
Median after | 7.47 | 125 | 69 |
Output data head view
Sales | CompPrice | Income | Advertising | Population | Price | ShelveLoc | Age | Education | Urban | US | out_cap_Sales | out_cap_CompPrice | out_imp_Sales | out_imp_CompPrice |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.50 | 138 | 73 | 11 | 276 | 120 | Bad | 42 | 17 | Yes | Yes | 9.50 | 138 | 9.50 | 138 |
11.22 | 111 | 48 | 16 | 260 | 83 | Good | 65 | 10 | Yes | Yes | 11.22 | 111 | 11.22 | 111 |
10.06 | 113 | 35 | 10 | 269 | 80 | Medium | 59 | 12 | Yes | Yes | 10.06 | 113 | 10.06 | 113 |
7.40 | 117 | 100 | 4 | 466 | 97 | Medium | 55 | 14 | Yes | Yes | 7.40 | 117 | 7.40 | 117 |
4.15 | 141 | 64 | 3 | 340 | 128 | Bad | 38 | 13 | Yes | No | 4.15 | 141 | 4.15 | 141 |
10.81 | 124 | 113 | 13 | 501 | 72 | Bad | 78 | 16 | No | Yes | 10.81 | 124 | 10.81 | 124 |
ExpOutliers(Carseats, varlist = c("Sales","CompPrice","Income"), method = "3xStDev", treatment = "medain", capping = c(0.1, 0.9))
Summary
Category | Sales | CompPrice | Income |
---|---|---|---|
Lower cap : 0.1 | 4.119 | 106 | 30 |
Upper cap : 0.9 | 11.3 | 145 | 107 |
Lower bound | -0.98 | 78.97 | -15.3 |
Upper bound | 15.97 | 170.98 | 152.62 |
Num of outliers | 1 | 2 | 0 |
Lower outlier case | 43 | ||
Upper outlier case | 377 | 311 | |
Mean before | 7.5 | 124.97 | 68.66 |
Mean after | 7.47 | 124.97 | 68.66 |
Median before | 7.49 | 125 | 69 |
Median after | 7.49 | 125 | 69 |
Output data head view
Sales | CompPrice | Income | Advertising | Population | Price | ShelveLoc | Age | Education | Urban | US | out_cap_Sales | out_cap_CompPrice | out_imp_Sales | out_imp_CompPrice |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.50 | 138 | 73 | 11 | 276 | 120 | Bad | 42 | 17 | Yes | Yes | 9.50 | 138 | 9.50 | 138 |
11.22 | 111 | 48 | 16 | 260 | 83 | Good | 65 | 10 | Yes | Yes | 11.22 | 111 | 11.22 | 111 |
10.06 | 113 | 35 | 10 | 269 | 80 | Medium | 59 | 12 | Yes | Yes | 10.06 | 113 | 10.06 | 113 |
7.40 | 117 | 100 | 4 | 466 | 97 | Medium | 55 | 14 | Yes | Yes | 7.40 | 117 | 7.40 | 117 |
4.15 | 141 | 64 | 3 | 340 | 128 | Bad | 38 | 13 | Yes | No | 4.15 | 141 | 4.15 | 141 |
10.81 | 124 | 113 | 13 | 501 | 72 | Bad | 78 | 16 | No | Yes | 10.81 | 124 | 10.81 | 124 |
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.