## Package 'SlotLim'

October 25, 2025

**Title** Catch Advice for Fisheries Managed by Harvest Slot Limits **Version** 0.0.2

Description Catch advice for data-limited vertebrate and invertebrate fisheries managed by harvest slot limits using the SlotLim harvest control rule. The package accompanies the manuscript ``SlotLim: catch advice for data-limited vertebrate and invertebrate fisheries managed by harvest slot limits" (Pritchard et al., in prep). Minimum data requirements: at least two consecutive years of catch data, length–frequency distributions, and biomass or abundance indices (all from fishery-dependent sources); species-specific growth rate parameters (either von Bertalanffy, Gompertz, or Schnute); and either the natural mortality rate ('M') or the maximum observed age ('tmax'), from which M is estimated. The following functions have optional plotting capabilities that require 'ggplot2' installed: prop\_target(), TBA(), SAM(), catch\_advice(), catch\_adjust(), and slotlim\_once().

| License GPL-3                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------|
| Encoding UTF-8                                                                                                                       |
| RoxygenNote 7.3.2                                                                                                                    |
| Imports ggplot2, grid, stats, utils, patchwork                                                                                       |
| Suggests testthat (>= 3.0.0)                                                                                                         |
| Config/testthat/edition 3                                                                                                            |
| NeedsCompilation no                                                                                                                  |
| Author C.J. Pritchard [aut, cre] (ORCID: <a href="https://orcid.org/0000-0001-7093-6785">https://orcid.org/0000-0001-7093-6785</a> ) |
| Maintainer C.J. Pritchard <cj_pritchard@outlook.com< td=""></cj_pritchard@outlook.com<>                                              |
| Repository CRAN                                                                                                                      |
| <b>Date/Publication</b> 2025-10-25 12:30:02 UTC                                                                                      |
|                                                                                                                                      |

## **Contents**

| catch   | adjust  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 2 | į |
|---------|---------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| cutcii_ | _uajust | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | _ | • |

2 catch\_adjust

```
      catch_advice
      4

      percentile
      5

      prop_target
      6

      rb
      8

      SAM
      9

      slotlim_once
      11

      TBA
      14

      Index
      16
```

## **Description**

Calculates the targeted proportions under historical (old) and proposed (new) harvest slot limits using the same survivorship-by-length framework as prop\_target. The ratio ("catch adjustment") is returned, and (optionally) a historical catch value is scaled by the adjustment. The optional plot overlays old/new in-slot proportions on the normalized survivorship curve with arrows indicating the direction of change (old  $\rightarrow$  new).

## Usage

```
catch_adjust(
  old_minLS = NULL,
  old_maxLS = NULL,
  old_Lc = NULL,
  new_minLS = NULL,
  new_maxLS = NULL,
  new_Lc = NULL,
  catch = NULL,
 M = NULL
  growth_model = c("vb", "gompertz", "schnute"),
 Linf = NULL,
 K = NULL
  10 = 0,
  tmax = NULL,
  Gom_Linf = NULL,
  Gom_K = NULL,
  Gom_10 = NULL,
  g1 = NULL,
  g2 = NULL
  12 = NULL,
  Lmin = NULL,
  plot = FALSE,
  length_units = NULL
)
```

catch\_adjust 3

#### **Arguments**

```
old_minLS, old_maxLS, old_Lc
                  Numeric. Historical slot limits and length at first capture.
new_minLS, new_maxLS, new_Lc
                  Numeric. New slot limits and length at first capture. If new_Lc is NULL, old_Lc
                  is used.
                  Optional numeric. Historical catch to be adjusted. If provided, adjusted_catch
catch
                  = catch * (prop_new/prop_old) is also computed.
М
                  Numeric or NULL. Natural mortality. If NULL, defaults to M = 4.899 * tmax^-0.916.
                  One of "vb", "gompertz", "schnute".
growth_model
Linf, K, 10
                  von Bertalanffy parameters; 10 is start length (default 0).
                  Numeric. The maximum observed age used to bound the integrals via 1(tmax)
tmax
                  and in the default mortality estimator M = 4.899 * tmax^-0.916.
Gom_Linf, Gom_K, Gom_10
                  Gompertz parameters; requires 0 < Gom_10 < Gom_Linf.
g1, g2, 12
                  Schnute parameters; 12 is length at tmax; requires g1>0, 12>0, and this param-
                  eterization assumes g2 != 0.
l min
                  Optional numeric. Lower bound for the curve grid. If NULL it uses the model's
                  start length (10, Gom_10, or 0).
plot
                  Logical. If TRUE, return a ggplot2 plot. Default FALSE (returns numeric catch
                  adjustment only).
length_units
                  Optional character scalar. Units to show in the x-axis label when plot = TRUE
                  (e.g., "mm" or "cm"). If NULL (default), the label is simply "Length".
```

## Value

If plot = FALSE (default): a numeric scalar adjust\_factor = prop\_new/prop\_old. If plot = TRUE: a list with

- prop\_old, prop\_new targeted proportions under old/new slots,
- adjust\_factor prop\_new/prop\_old,
- adjusted\_catch only if catch provided,
- plot the ggplot2 object (or NULL if **ggplot2** is unavailable).

## **Examples**

4 catch\_advice

catch\_advice

catch\_advice

## **Description**

Calculates the advised catch using the SlotLim framework and (optionally) returns a plot of the percentage change relative to Cy across a grid of (TBA, SAM) values, with the output overlaid.

## Usage

```
catch_advice(
   Cy = NULL,
   TBA = NULL,
   SAM = NULL,
   T1 = NULL,
   T2 = NULL,
   plot = FALSE
)
```

## **Arguments**

| Су   | Numeric (length 1) > 0. Most recent annual catch, or multi-year average. If landing size restrictions have changed, use catch_adjust to adjust the starting |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | catch value accordingly.                                                                                                                                    |
| TBA  | Numeric (length 1) $>$ 0. Targeted Biomass Adjustment (see TBA()).                                                                                          |
| SAM  | Numeric (length 1) $> 0$ . Size Adherence Multiplier (see SAM()).                                                                                           |
| T1   | Optional numeric (length 1) in $(0,1)$ . Maximum allowed proportional <i>decrease</i> . If NULL, no lower cap.                                              |
| T2   | Optional numeric (length 1) in $(0,1)$ . Maximum allowed proportional <i>increase</i> . If NULL, no upper cap.                                              |
| plot | Logical. If TRUE, return a ggplot2 heatmap (default FALSE).                                                                                                 |

## Value

- Ay: Catch advice (same units as Cy).
- Ay\_percent: Percent change of advice relative to Cy.
- plot: (only when plot = TRUE) a **ggplot2** object visualizing percent change across  $TBA \times SAM$ .

percentile 5

## See Also

```
TBA, SAM
```

## **Examples**

```
Cy <- 1000; TBA <- 1.1; SAM <- 0.9
catch_advice(Cy, TBA, SAM) # compute only

catch_advice(Cy, TBA, SAM, plot = TRUE)
catch_advice(Cy, TBA, SAM, T1 = 0.2, T2 = 0.2, plot = TRUE)</pre>
```

percentile

percentile

## Description

Calculates specified percentiles from length-frequency data.

## Usage

```
percentile(
  LF = NULL,
  probs = c(0.025, 0.975),
  na.rm = TRUE,
  sort_probs = TRUE,
  unique_probs = TRUE
)
```

## **Arguments**

| LF           | Numeric vector of length-frequency data (e.g., data\$length).                                                                                     |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| probs        | Numeric vector of probabilities in $[0,1]$ indicating which percentiles to calculate. Default is c(0.025, 0.975) as per SlotLim.                  |
| na.rm        | Logical; if TRUE (default), NAs are removed before computing percentiles. If FALSE, NA values may propagate to the result.                        |
| sort_probs   | Logical; if TRUE (default), probs are sorted ascending (labels follow the returned order). If FALSE, percentiles are returned in the input order. |
| unique_probs | Logical; if TRUE (default), duplicate probs are deduplicated (first occurrence kept for labeling).                                                |

## **Details**

```
Uses stats::quantile(..., type = 7), the R default. Labels drop trailing zeros (e.g., L_5 not L_5.0).
```

6 prop\_target

## Value

A named list (length = length of probs) where each element corresponds to the requested percentile. Names are formatted as  $L_x$ , where x is the percentile value in percent (e.g.,  $L_2.5$ ,  $L_97.5$ ).

## **Examples**

```
length_data <- c(10, 9, 7, 10, 11, 13, NA, 11, 6, 20)
percentile(length_data) # default 2.5th and 97.5th
percentile(length_data, probs = c(0.05, 0.95)) # 5th and 95th percentiles
```

prop\_target

prop\_target

## Description

Calculates the proportion of normalized survivorship S(L) falling inside harvest slot limits [minLS, maxLS] relative to the exploitable population (>L\_c), where  $S(L) = \exp(-M\,t(L))$  and t(L) is the inverse age-from-length for a chosen growth model.

## Usage

```
prop_target(
 minLS = NULL,
 maxLS = NULL,
 Lc = NULL
 M = NULL
  growth_model = c("vb", "gompertz", "schnute"),
 Linf = NULL,
 K = NULL
  10 = 0,
  tmax = NULL,
  Gom_Linf = NULL,
  Gom_K = NULL,
  Gom_10 = NULL
  g1 = NULL,
  g2 = NULL,
 12 = NULL
  Lmin = NULL,
  plot = FALSE,
  length_units = NULL
)
```

## Arguments

minLS, maxLS Numeric. Minimum and maximum harvest slot limits (same units as length).

Lc Numeric. Lower cutoff; individuals below Lc are *not exploitable*.

prop\_target 7

M Numeric or NULL. Natural mortality. If NULL, defaults to  $M=4.899\,t_{max}^{-0.916}$ .

growth\_model Character. One of "vb", "gompertz", "schnute".

Linf, K, 10 VB parameters; 10 is the start length (default 0).

tmax Numeric. Maximum age used to determine  $l(t_{max})$  and set the upper integration

bound.

Gom\_Linf, Gom\_K, Gom\_10

Gompertz parameters; requires  $0 < Gom_10 < Gom_Linf$ .

g1, g2, 12 Schnute parameters;  $12 = 1(t_{max})$ ; requires g1 > 0, 12 > 0, g2 != 0.

Lmin Optional numeric. Lower bound for the curve grid. If NULL it uses the model's

start length (10, Gom\_10, or 0).

plot Logical. If TRUE, return a **ggplot2** visual; default FALSE.

length\_units Optional character scalar. Units to display in the x-axis label when plot = TRUE

(e.g., "cm" or "mm"). If NULL (default), the label is simply "Length".

## **Details**

Supported growth models (reparameterized to avoid negative length-at-age-0 and to give exact  $t(L_{start}) = 0$ ):

• von Bertalanffy (VB) with start length  $l_0$ :

$$t(l) = -\frac{1}{K} \ln \left( \frac{L_{\infty} - l}{L_{\infty} - l_0} \right), \quad l(t) = L_{\infty} \left( 1 - (1 - l_0/L_{\infty}) e^{-Kt} \right).$$

• Gompertz with start length  $l_0$  (requires  $0 < l_0 < L_{\infty}$ ):

$$t(l) = -\frac{1}{K} \ln \left( \frac{\ln(l/L_{\infty})}{\ln(l_0/L_{\infty})} \right), \quad l(t) = L_{\infty} \left( l_0/L_{\infty} \right)^{e^{-Kt}}.$$

• Schnute with l(0) = 0 and  $l(t_{max}) = l_2$ :

$$t(l) = -\frac{1}{g_1} \ln \left( 1 - \frac{l_{g_2}^{g_2}}{l_2^{g_2}} \left( 1 - e^{-g_1 t_{max}} \right) \right), \quad l(t) = \left( \frac{l_2^{g_2}}{1 - e^{-g_1 t_{max}}} \left( 1 - e^{-g_1 t} \right) \right)^{1/g_2}.$$

Survivorship is normalized at the model start so that  $S(L_{start}) = 1$ : 10 for vB, Gom\_10 for Gompertz (requires 0 < Gom\_10 < Gom\_Linf), and 0 for Schnute.

Targeted proportion:

$$\frac{\int_{\max(\min LS, L_c)}^{\min(\max LS, l(t_{max}))} S(L) dL}{\int_{\max(L_c, L_{start})}^{l(t_{max})} S(L) dL}.$$

We clamp only near the upper limit to avoid  $\log(0)$  and never shift the start, preserving  $t(L_{start}) = 0$ .

#### Value

If plot = FALSE (default): numeric scalar (the targeted proportion). If plot = TRUE: list with proportion and plot (a ggplot object).

8 rb

## **Examples**

```
# Numeric only
prop_target(minLS=120, maxLS=240, Lc=80,
    growth_model="vb", Linf=405, K=0.118, l0=0, tmax=34, plot=FALSE)

# With plot (requires ggplot2)
out <- prop_target(minLS=120, maxLS=240, Lc=80,
    growth_model="schnute", g1=0.2, g2=0.2, l2=405, tmax=34, plot=TRUE, length_units = "mm")
out$plot</pre>
```

rb

rb

## **Description**

Calculates the proportional rate of change in an abundance or biomass index (rb) between consecutive data points using one of three methods:

"annual" Change between the two most recent data points:  $(x_1 - x_2)/x_2$ . Requires at least 2 values.

"1over2" Change between the most recent value and the mean of the two values prior:  $(x_1 - \bar{x}_{2:3})/\bar{x}_{2:3}$ . Requires at least 3 values.

"20ver3" Change between the mean of the two most recent values and the mean of the three values prior:  $(\bar{x}_{1:2} - \bar{x}_{3:5})/\bar{x}_{3:5}$ . Requires at least 5 values.

## Usage

```
rb(
  b_index = NULL,
  method = c("annual", "1over2", "2over3"),
  na.rm = FALSE,
  digits = NULL
)
```

## **Arguments**

| b_index | Numeric vector of abundance or biomass indices in descending time order (most recent first).                                              |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------|
| method  | Character string; one of "annual" (default), "1over2", or "2over3".                                                                       |
| na.rm   | Logical; if TRUE, NAs are removed before computing. If FALSE (default) and NAs are present in the needed positions, the result may be NA. |
| digits  | Optional integer. If supplied, the result is rounded using round(x, digits). If NULL (default), full precision is returned.               |

SAM 9

#### **Details**

Validates that sufficient data are available for the chosen method and guards against (near-)zero denominators. If a needed denominator is NA (after na.rm) or numerically zero, an error is thrown.

#### Value

A numeric scalar: the proportional rate of change rb. Positive values indicate an increase; negative values indicate a decrease.

## Note

b\_index must be in descending time order (most recent first). Indices should be non-negative (e.g., CPUE).

#### See Also

**TBA** 

## **Examples**

```
cpue <- c(0.75, 0.70, 1.49, 1.20, 1.10) # most recent first
rb(b_index = cpue) # annual method by default
rb(b_index = cpue, method = "1over2")
rb(b_index = cpue, method = "2over3")

cpue2 <- c(0.75, NA, 1.49, 1.20, 1.10)
rb(cpue2, method = "1over2", na.rm = TRUE, digits = 2)</pre>
```

SAM SAM

## **Description**

Calculate the size adherence multiplier (SAM), which evaluates adherence to harvest slot limits by comparing (lower, upper) percentiles of length–frequency data to minLS and maxLS. Optionally, produce a graph showing how SAM varies across a grid of (lower, upper) values.

When lower >= minLS and upper <= maxLS, neither of the slot limits are violated and the multiplier is calculated without constraint. When lower < minLS or upper > maxLS, at least one slot limit is violated and the multiplier is capped at constraint (default = 1).

## Usage

```
SAM(
  lower = NULL,
  upper = NULL,
  minLS = NULL,
  maxLS = NULL,
```

10 SAM

```
constraint = 1,
digits = 2,
plot = FALSE,
res = 1,
lower_percentile = 2.5,
upper_percentile = 97.5,
length_units = NULL
)
```

## Arguments

| lower           | Numeric (length 1). Lower percentile of catch length (e.g., 2.5th).                                                                             |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| upper           | Numeric (length 1). Upper percentile of catch length (e.g., 97.5th).                                                                            |
| minLS           | Numeric (length 1). Minimum landing size (must be $> 0$ ).                                                                                      |
| maxLS           | Numeric (length 1). Maximum landing size (must be > 0).                                                                                         |
| constraint      | Numeric (length 1) in $[0,1]$ . Cap applied when either slot limit is violated (default = 1).                                                   |
| digits          | Integer. Number of decimal places used to round outputs (default = 2). Set $digits = NA$ to prevent rounding.                                   |
| plot            | Logical. If TRUE, include a <b>ggplot2</b> plot of the calculated value on a grid of (lower, upper) combinations (default FALSE).               |
| res             | Numeric > 0. Grid step for plotting when plot = TRUE. Smaller values increase smoothness but can be slower (default 1).                         |
| lower_percentil | e, upper_percentile                                                                                                                             |
|                 | Numbers used only for axis labels when plot = TRUE (defaults 2.5 and 97.5).                                                                     |
| length_units    | Optional character scalar. Units to display in the x/y-axis labels when plot = TRUE (e.g., "cm" or "mm"). If NULL (default), units are omitted. |

#### **Details**

The unconstrained multiplier is  $(1 + lower\_adherence) \times (1 + upper\_adherence)$ . If any slot limit is violated, the multiplier is pmin(constraint, multiplier).

## Value

A list with:

```
lower_adherence Relative deviation of lower from minLS: (lower-minLS)/minLS. upper_adherence Relative deviation of upper from maxLS: (maxLS-upper)/maxLS. SAM Size adherence multiplier. SAM > 1 increases the advised catch; SAM < 1 decreases it. plot (only when plot = TRUE) a ggplot2 object visualizing SAM over a grid. Illogical combinations of percentiles are shaded grey (e.g., L_{2.5} > L_{97.5}).
```

## See Also

percentile for computing percentiles from length–frequency data.

slotlim\_once 11

## **Examples**

```
SAM(lower = 13, upper = 24, minLS = 12, maxLS = 24)  # no violation
SAM(lower = 13, upper = 25, minLS = 12, maxLS = 24, constraint = 0.95) # violation with constraint

out <- SAM(
    lower = 13, upper = 25,
    minLS = 12, maxLS = 24,
    res = 0.5,
    lower_percentile = 5, upper_percentile = 95,
    constraint = 1,
    plot = TRUE,
    length_units = "cm")
out$SAM</pre>
```

slotlim\_once

slotlim\_once

## Description

Run a single SlotLim pass: compute rb, P, TBA, SAM, and catch advice Ay\_percent; optionally show a composite plot (P, TBA, SAM, Ay\_percent).

## Usage

```
slotlim_once(
 Cy = NULL,
  b_index = NULL,
 method = c("annual", "1over2", "2over3"),
 minLS = NULL,
 maxLS = NULL,
 Lc = NULL,
  growth_model = c("vb", "gompertz", "schnute"),
 Linf = NULL,
 K = NULL
  10 = 0,
  tmax = NULL,
  Gom_Linf = NULL,
 Gom_K = NULL,
 Gom_10 = NULL,
  g1 = NULL,
 g2 = NULL,
 12 = NULL,
 M = NULL
  lower = NULL,
  upper = NULL,
```

12 slotlim\_once

```
LF = NULL,
probs = c(0.025, 0.975),
constraint = 1,
T1 = NULL,
T2 = NULL,
plots = FALSE,
length_units = NULL
)
```

## **Arguments**

Cy Numeric. Historical catch.

b\_index Numeric vector of a biomass or abundance index in descending time order (most

recent first).

method Character. Method for calculating rb ("annual", "1over2", or "2over3").

minLS, maxLS, Lc Numeric. Slot limits and length at first capture.

growth\_model One of "vb", "gompertz", "schnute".

Linf, K, 10 von Bertalanffy (vB) parameters; 10 is the start length (default 0).

tmax Numeric. Maximum observed age; used for integration bounds and (if M is NULL)

to compute default M.

Gom\_Linf, Gom\_K, Gom\_10

Gompertz parameters; requires 0 < Gom\_10 < Gom\_Linf.

g1, g2, 12 Schnute parameters; 12 is length at tmax; requires g1 > 0, 12 > 0, and this pa-

rameterization assumes g2 != 0.

Numeric or NULL. Natural mortality. If NULL, defaults to  $M = 4.899 \times tmax^{-0.916}$ .

lower, upper Optional values at specified percentiles. If provided, used directly by SAM().

LF Optional numeric vector of length-frequency data. If lower/upper are NULL and

LF is supplied, the function computes percentiles via percentile(LF, probs)

and uses them.

probs Numeric vector of probabilities in [0,1] passed to percentile() when LF is

used. Default c(0.025, 0.975).

constraint Numeric (default 1). Passed to SAM().

T1, T2 Optional numerics passed to catch\_advice().

plots Logical; if TRUE, a  $2 \times 2$  composite plot is printed (if **patchwork** is available).

length\_units Optional character; x-axis units for the prop\_target and SAM plots (e.g., "mm").

## **Details**

Precedence for size inputs: if both lower and upper are provided, they are used. Otherwise, if LF is provided, they are derived via percentile(LF, probs). Else error.

## Value

A list with Ay, Ay\_percent, TBA, SAM, rb, P, and (if plots=TRUE) a composite plot. Also returns the resolved M and the lower/upper bounds actually used; tmax is echoed back.

slotlim\_once 13

## **Examples**

```
# Minimal, fast example (no plotting), passing lower/upper directly:
slotlim_once(
  Cy = 1000,
  b_{index} = c(0.5, 0.6, 0.7, 0.6, 0.5), method = "2over3",
 minLS = 120, maxLS = 240, Lc = 80,
  growth_model = "vb", Linf = 405, K = 0.118, 10 = 0,
  tmax = 34,
  lower = 100, upper = 220
# Derive lower/upper from length-frequency percentiles:
set.seed(1)
LF \leftarrow rnorm(200, mean = 180, sd = 40) \# toy example LF
# Compute M from tmax:
slotlim_once(
  Cy = 1000,
  b_{index} = c(0.5, 0.6, 0.7, 0.6, 0.5),
  minLS = 120, maxLS = 240, Lc = 80,
  growth_model = "vb", Linf = 405, K = 0.118, 10 = 0,
  tmax = 34,
 LF = LF, probs = c(0.05, 0.95),
 method = "lover2" # rb method chosen
)
# Use explicit M (still provide tmax for bounds):
slotlim_once(
  Cy = 1000,
  b_{index} = c(0.5, 0.6, 0.7, 0.6, 0.5),
  minLS = 120, maxLS = 240, Lc = 80,
  growth_model = "vb", Linf = 405, K = 0.118, 10 = 0,
  tmax = 34,
  M = 0.19,
  LF = LF, probs = c(0.025, 0.975),
  method = "lover2" # rb method chosen
)
# Plotting example (needs ggplot2 and patchwork):
slotlim_once(
  Cy = 1000,
  b_{index} = c(0.5, 0.6, 0.7, 0.6, 0.5),
  minLS = 120, maxLS = 240, Lc = 80,
  growth_model = "vb", Linf = 405, K = 0.118, 10 = 0,
  tmax = 34,
  LF = LF, probs = c(0.025, 0.975),
  method = "lover2", # rb method chosen
  plots = TRUE, length_units = "mm"
```

14 TBA

## **Description**

Calculate the targeted biomass adjustment (TBA), which dampens the influence of proportional rate of change rb on catch advice when the proportion of abundance targeted by harvest slot limits is small. Optionally, produce a graph showing how TBA varies across a grid of (P\_targeted, rb) values.

The TBA is calculated as  $1 + (P_{\text{targeted}} \times rb)$ .

## Usage

```
TBA(P_targeted = NULL, rb = NULL, digits = 2, plot = FALSE)
```

## **Arguments**

| P_targeted | Numeric (length 1) in [0, 1]. Proportion of abundance targeted by harvest slot limits (e.g., from prop_target()).                                       |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| rb         | Numeric (length 1). Proportional rate of change in a biomass index (e.g., from rb()). Typical values lie in [-1, 1], but larger magnitudes are allowed. |
| digits     | Integer. Number of decimal places used to round outputs (default = 2). Set digits = NA to prevent rounding.                                             |
| plot       | Logical. If TRUE, include a <b>ggplot2</b> plot of the calculated value on a grid of (P_targeted, rb) combinations (default FALSE).                     |

#### **Details**

The adjustment dampens large changes in biomass indices when the targeted proportion is small by multiplying rb by P\_targeted. The plot shades the surface of  $1 + P \times rb$ . A dashed horizontal line marks rb = 0.

## Value

A list with:

P\_targeted Input targeted proportion (numeric scalar).

**rb** Input proportional rate of change (numeric scalar).

**damped\_change**  $P_{\mathrm{targeted}} \times rb$  (numeric scalar).

**TBA** Targeted biomass adjustment multiplier  $1 + P_{\rm targeted} \times rb$  (numeric scalar). TBA > 1 increases advised catch; TBA < 1 decreases it.

**plot** (only when plot=TRUE) a **ggplot2** object visualizing TBA over a grid.

## See Also

prop\_target for targeted proportion; rb for proportional rate of change.

TBA 15

## Examples

```
TBA(P_targeted = 0.5, rb = -0.5)  # compute only

# compute + plot (requires ggplot2)
out <- TBA(P_targeted = 0.5, rb = -0.5, digits = 2, plot = TRUE)
out$plot</pre>
```

# **Index**

```
catch_adjust, 2
catch_advice, 4
percentile, 5, 10
prop_target, 2, 6, 14
rb, 8, 14
SAM, 5, 9
slotlim_once, 11
TBA, 5, 9, 14
```