The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
An R package for silhouette-based diagnostics in standard, soft, and multi-way clustering.
Silhouette diagnostics assess clustering quality using cohesion and separation of clusters. This package implements silhouette widths for various clustering setups, including support for soft membership probabilities and multi-way clustering structures.
You can install the released version of Silhouette
from
GitHub using:
# Install devtools if needed
if (!requireNamespace("devtools", quietly = TRUE)) {
install.packages("devtools")
}
# Install from GitHub
::install_github("kskbhat/Silhouette") devtools
Once accepted on CRAN, install via:
install.packages("Silhouette")
Usage of the main functions is demonstrated in the package examples and documentation.
For an intro, see the vignette A quick tour of
Silhouette
, which is available as
vignette("Silhouette")
You can access the vignette from the User Guide
tab in
the top navigation bar of the package’s website.
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. doi:10.1016/0377-0427(87)90125-7
Van der Laan, M., Pollard, K., & Bryan, J. (2003). A new partitioning around medoids algorithm. Journal of Statistical Computation and Simulation, 73(8), 575–584. doi:10.1080/0094965031000136012
Campello, R. J., & Hruschka, E. R. (2006). A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets and Systems, 157(21), 2858–2875. doi:10.1016/j.fss.2006.07.006
Schepers, J., Ceulemans, E., & Van Mechelen, I. (2008). Selecting among multi-mode partitioning models of different complexities: A comparison of four model selection criteria. Journal of Classification, 25(1), 67–85. doi:10.1007/s00357-008-9005-9
Kassambara, A., & Mundt, F. (2020). factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. doi:10.32614/CRAN.package.factoextra
Raymaekers, J., & Rousseeuw, P. J. (2022). Silhouettes and quasi residual plots for neural nets and tree-based classifiers. Journal of Computational and Graphical Statistics, 31(4), 1332–1343. doi:10.1080/10618600.2022.2050249
Bhat Kapu, S., & Kiruthika. (2024). Some density-based silhouette diagnostics for soft clustering algorithms. Communications in Statistics: Case Studies, Data Analysis and Applications, 10(3–4), 221–238. doi:10.1080/23737484.2024.2408534
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., & Hornik, K. (2025). cluster: Cluster Analysis Basics and Extensions. R package version 2.1.8.1. doi:10.32614/CRAN.package.cluster
Bhat Kapu, S., & Kiruthika, C. (2025). Block Probabilistic Distance Clustering: A Unified Framework and Evaluation. PREPRINT (Version 1) available at Research Square. doi:10.21203/rs.3.rs-6973596/v1
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.