The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This vignette shows how to use Signac with Seurat. There are three parts: Seurat, Signac and then visualization. We use an example PBMCs CITE-seq data set from 10X Genomics.
Start with the standard pre-processing steps for a Seurat object.
library(Seurat)
Download data from 10X Genomics.
dir.create("fls")
download.file("https://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_10k_protein_v3/pbmc_10k_protein_v3_filtered_feature_bc_matrix.h5",
destfile = "fls/pbmc_10k_protein_v3_filtered_feature_bc_matrix.h5")
Create a Seurat object, and then perform SCTransform normalization. Note:
# load dataset
= Read10X_h5(filename = "fls/pbmc_10k_protein_v3_filtered_feature_bc_matrix.h5")
E <- CreateSeuratObject(counts = E$`Gene Expression`, project = "pbmc")
pbmc
# run sctransform
<- SCTransform(pbmc)
pbmc
# optionally just normalize data pbmc <- NormalizeData(pbmc) pbmc <- FindVariableFeatures(pbmc)
# pbmc <- ScaleData(pbmc)
Perform dimensionality reduction by PCA and UMAP embedding. Note:
# These are now standard steps in the Seurat workflow for visualization and clustering
<- RunPCA(pbmc, verbose = FALSE)
pbmc <- RunUMAP(pbmc, dims = 1:30, verbose = FALSE)
pbmc <- FindNeighbors(pbmc, dims = 1:30, verbose = FALSE) pbmc
Load the package
require(SignacX)
Generate SignacX labels for the Seurat object. Note:
# Run Signac
<- Signac(pbmc, num.cores = 4)
labels = GenerateLabels(labels, E = pbmc) celltypes
Sometimes, training the neural networks takes a lot of time. To make Signac faster, we implemented SignacFast which uses an ensemble of pre-trained neural network models. Note:
# Run Signac
<- SignacFast(pbmc, num.cores = 12)
labels_fast = GenerateLabels(labels_fast, E = pbmc) celltypes_fast
B | MPh | TNK | Unclassified | |
---|---|---|---|---|
B | 550 | 0 | 0 | 0 |
MPh | 0 | 2178 | 0 | 0 |
TNK | 0 | 0 | 4914 | 0 |
Unclassified | 0 | 4 | 2 | 217 |
Now we can visualize the cell type classifications at many different levels: Immune and nonimmune
<- AddMetaData(pbmc, metadata = celltypes_fast$Immune, col.name = "immmune")
pbmc <- SetIdent(pbmc, value = "immmune")
pbmc png(filename = "fls/plot1_citeseq.png")
DimPlot(pbmc)
dev.off()
<- AddMetaData(pbmc, metadata = celltypes$L2, col.name = "celltypes")
pbmc <- SetIdent(pbmc, value = "celltypes")
pbmc png(filename = "fls/plot2_citeseq.png")
DimPlot(pbmc)
dev.off()
<- AddMetaData(pbmc, metadata = celltypes$CellTypes, col.name = "celltypes")
pbmc <- SetIdent(pbmc, value = "celltypes")
pbmc png(filename = "./fls/plot3_citeseq.png")
DimPlot(pbmc)
dev.off()
<- AddMetaData(pbmc, metadata = celltypes$CellTypes_novel, col.name = "celltypes_novel")
pbmc <- SetIdent(pbmc, value = "celltypes_novel")
pbmc png(filename = "./fls/plot4_citeseq.png")
DimPlot(pbmc)
dev.off()
<- AddMetaData(pbmc, metadata = celltypes$CellStates, col.name = "cellstates")
pbmc <- SetIdent(pbmc, value = "cellstates")
pbmc png(filename = "./fls/plot5_citeseq.png")
DimPlot(pbmc)
dev.off()
Identify differentially expressed genes between cell types.
<- SetIdent(pbmc, value = "celltypes")
pbmc
# Find markers for all clusters, and draw a heatmap
<- FindAllMarkers(pbmc, only.pos = TRUE, verbose = F, logfc.threshold = 1)
markers library(dplyr)
<- markers %>% group_by(cluster) %>% top_n(n = 5, wt = avg_logFC)
top5
png(filename = "./fls/plot9_citeseq.png", width = 640, height = 720)
DoHeatmap(pbmc, features = unique(top5$gene), angle = 90)
dev.off()
<- SetIdent(pbmc, value = "cellstates")
pbmc
# Find markers for all clusters, and draw a heatmap
<- FindAllMarkers(pbmc, only.pos = TRUE, verbose = F, logfc.threshold = 1)
markers <- markers %>% group_by(cluster) %>% top_n(n = 5, wt = avg_logFC)
top5
png(filename = "./fls/plot6_citeseq.png", width = 640, height = 720)
DoHeatmap(pbmc, features = unique(top5$gene), angle = 90)
dev.off()
Add protein expression information
"ADT"]] <- CreateAssayObject(counts = E$`Antibody Capture`[, colnames(E$`Antibody Capture`) %in%
pbmc[[colnames(pbmc)])
<- NormalizeData(pbmc, assay = "ADT", normalization.method = "CLR")
pbmc <- ScaleData(pbmc, assay = "ADT") pbmc
Identify differentially expressed proteins between clusters
DefaultAssay(pbmc) <- "ADT"
# Find protein markers for all clusters, and draw a heatmap
<- FindAllMarkers(pbmc, assay = "ADT", only.pos = TRUE, verbose = F)
adt.markers png(filename = "./fls/plot7_citeseq.png", width = 640, height = 720)
DoHeatmap(pbmc, features = unique(adt.markers$gene), angle = 90)
dev.off()
Save results
saveRDS(pbmc, file = "fls/pbmcs_signac_citeseq.rds")
saveRDS(celltypes, file = "fls/celltypes_citeseq.rds")
saveRDS(celltypes_fast, file = "fls/celltypes_fast_citeseq.rds")
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.5 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## loaded via a namespace (and not attached):
## [1] compiler_4.0.3 magrittr_2.0.1 formatR_1.7 htmltools_0.5.1.1
## [5] tools_4.0.3 yaml_2.2.1 stringi_1.5.3 rmarkdown_2.6
## [9] highr_0.8 knitr_1.30 stringr_1.4.0 digest_0.6.27
## [13] xfun_0.20 rlang_0.4.10 evaluate_0.14
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.