The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Cell type classification with SignacX: CITE-seq PBMCs from 10X Genomics

Mathew Chamberlain

2021-11-18

This vignette shows how to use Signac with Seurat. There are three parts: Seurat, Signac and then visualization. We use an example PBMCs CITE-seq data set from 10X Genomics.

Seurat

Start with the standard pre-processing steps for a Seurat object.

library(Seurat)

Download data from 10X Genomics.

dir.create("fls")
download.file("https://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_10k_protein_v3/pbmc_10k_protein_v3_filtered_feature_bc_matrix.h5", 
    destfile = "fls/pbmc_10k_protein_v3_filtered_feature_bc_matrix.h5")

Create a Seurat object, and then perform SCTransform normalization. Note:

# load dataset
E = Read10X_h5(filename = "fls/pbmc_10k_protein_v3_filtered_feature_bc_matrix.h5")
pbmc <- CreateSeuratObject(counts = E$`Gene Expression`, project = "pbmc")

# run sctransform
pbmc <- SCTransform(pbmc)

# optionally just normalize data pbmc <- NormalizeData(pbmc) pbmc <- FindVariableFeatures(pbmc)
# pbmc <- ScaleData(pbmc)

Perform dimensionality reduction by PCA and UMAP embedding. Note:

# These are now standard steps in the Seurat workflow for visualization and clustering
pbmc <- RunPCA(pbmc, verbose = FALSE)
pbmc <- RunUMAP(pbmc, dims = 1:30, verbose = FALSE)
pbmc <- FindNeighbors(pbmc, dims = 1:30, verbose = FALSE)

SignacX

Load the package

require(SignacX)

Generate SignacX labels for the Seurat object. Note:

# Run Signac
labels <- Signac(pbmc, num.cores = 4)
celltypes = GenerateLabels(labels, E = pbmc)
Can we make Signac faster?

Sometimes, training the neural networks takes a lot of time. To make Signac faster, we implemented SignacFast which uses an ensemble of pre-trained neural network models. Note:

# Run Signac
labels_fast <- SignacFast(pbmc, num.cores = 12)
celltypes_fast = GenerateLabels(labels_fast, E = pbmc)
SignacFast took only ~30 seconds. Relative to Signac, the main difference is that SignacFast tends to leave a few more cells “Unclassified.”
How does SignacFast compare to Signac?
B MPh TNK Unclassified
B 550 0 0 0
MPh 0 2178 0 0
TNK 0 0 4914 0
Unclassified 0 4 2 217

Visualizations

Now we can visualize the cell type classifications at many different levels: Immune and nonimmune

pbmc <- AddMetaData(pbmc, metadata = celltypes_fast$Immune, col.name = "immmune")
pbmc <- SetIdent(pbmc, value = "immmune")
png(filename = "fls/plot1_citeseq.png")
DimPlot(pbmc)
dev.off()

Immune, Nonimmune (if any) and unclassified cells

pbmc <- AddMetaData(pbmc, metadata = celltypes$L2, col.name = "celltypes")
pbmc <- SetIdent(pbmc, value = "celltypes")
png(filename = "fls/plot2_citeseq.png")
DimPlot(pbmc)
dev.off()

Myeloid and lymphocytes

pbmc <- AddMetaData(pbmc, metadata = celltypes$CellTypes, col.name = "celltypes")
pbmc <- SetIdent(pbmc, value = "celltypes")
png(filename = "./fls/plot3_citeseq.png")
DimPlot(pbmc)
dev.off()

Cell types

pbmc <- AddMetaData(pbmc, metadata = celltypes$CellTypes_novel, col.name = "celltypes_novel")
pbmc <- SetIdent(pbmc, value = "celltypes_novel")
png(filename = "./fls/plot4_citeseq.png")
DimPlot(pbmc)
dev.off()

Cell types with novel populations

pbmc <- AddMetaData(pbmc, metadata = celltypes$CellStates, col.name = "cellstates")
pbmc <- SetIdent(pbmc, value = "cellstates")
png(filename = "./fls/plot5_citeseq.png")
DimPlot(pbmc)
dev.off()

Cell states

Identify differentially expressed genes between cell types.

pbmc <- SetIdent(pbmc, value = "celltypes")

# Find markers for all clusters, and draw a heatmap
markers <- FindAllMarkers(pbmc, only.pos = TRUE, verbose = F, logfc.threshold = 1)
library(dplyr)
top5 <- markers %>% group_by(cluster) %>% top_n(n = 5, wt = avg_logFC)

png(filename = "./fls/plot9_citeseq.png", width = 640, height = 720)
DoHeatmap(pbmc, features = unique(top5$gene), angle = 90)
dev.off()

Immune marker genes - cell types

pbmc <- SetIdent(pbmc, value = "cellstates")

# Find markers for all clusters, and draw a heatmap
markers <- FindAllMarkers(pbmc, only.pos = TRUE, verbose = F, logfc.threshold = 1)
top5 <- markers %>% group_by(cluster) %>% top_n(n = 5, wt = avg_logFC)

png(filename = "./fls/plot6_citeseq.png", width = 640, height = 720)
DoHeatmap(pbmc, features = unique(top5$gene), angle = 90)
dev.off()

Immune marker genes - Cell states Add protein expression information

pbmc[["ADT"]] <- CreateAssayObject(counts = E$`Antibody Capture`[, colnames(E$`Antibody Capture`) %in% 
    colnames(pbmc)])
pbmc <- NormalizeData(pbmc, assay = "ADT", normalization.method = "CLR")
pbmc <- ScaleData(pbmc, assay = "ADT")

Identify differentially expressed proteins between clusters

DefaultAssay(pbmc) <- "ADT"
# Find protein markers for all clusters, and draw a heatmap
adt.markers <- FindAllMarkers(pbmc, assay = "ADT", only.pos = TRUE, verbose = F)
png(filename = "./fls/plot7_citeseq.png", width = 640, height = 720)
DoHeatmap(pbmc, features = unique(adt.markers$gene), angle = 90)
dev.off()

Immune marker genes

Save results

saveRDS(pbmc, file = "fls/pbmcs_signac_citeseq.rds")
saveRDS(celltypes, file = "fls/celltypes_citeseq.rds")
saveRDS(celltypes_fast, file = "fls/celltypes_fast_citeseq.rds")
Session Info
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.5 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## loaded via a namespace (and not attached):
##  [1] compiler_4.0.3    magrittr_2.0.1    formatR_1.7       htmltools_0.5.1.1
##  [5] tools_4.0.3       yaml_2.2.1        stringi_1.5.3     rmarkdown_2.6    
##  [9] highr_0.8         knitr_1.30        stringr_1.4.0     digest_0.6.27    
## [13] xfun_0.20         rlang_0.4.10      evaluate_0.14

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.