The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This vignette shows how to use Signac to annotate flow-sorted synovial cells by integrating SignacX with Seurat. We also compared Signac to another popular cell type annotation tool, SingleR. We start with raw counts.
Read the CEL-seq2 data.
<- function(counts.file, meta.file) {
ReadCelseq = suppressWarnings(readr::read_tsv(counts.file))
E <- E$gene
gns = E[, -1]
E = Matrix::Matrix(as.matrix(E), sparse = TRUE)
E rownames(E) <- gns
E
}
= "./fls/celseq_matrix_ru10_molecules.tsv.gz"
counts.file = "./fls/celseq_meta.immport.723957.tsv"
meta.file
= ReadCelseq(counts.file = counts.file, meta.file = meta.file)
E = suppressWarnings(readr::read_tsv(meta.file))
M
# filter data based on depth and number of genes detected
= Matrix::colSums(E != 0)
kmu = Matrix::colSums(E)
kmu2 = E[, kmu > 200 & kmu2 > 500]
E
# filter by mitochondrial percentage
= grepl("^MT-", rownames(E))
logik = Matrix::colSums(E[logik, ])/Matrix::colSums(E) * 100
MitoFrac = E[, MitoFrac < 20] E
require(SingleR)
data("hpca")
= SingleR(sc_data = E, ref_data = hpca$data, types = hpca$main_types, fine.tune = F, numCores = 4)
Q save(file = "fls/SingleR_Results.rda", Q)
= M$type[match(colnames(E), M$cell_name)]
True_labels saveRDS(True_labels, file = "fls/celltypes_amp_synovium_true.rds")
Start with the standard pre-processing steps for a Seurat object.
library(Seurat)
Create a Seurat object, and then perform SCTransform normalization. Note:
# load data
<- CreateSeuratObject(counts = E, project = "FACs")
synovium
# run sctransform
<- SCTransform(synovium, verbose = F) synovium
Perform dimensionality reduction by PCA and UMAP embedding. Note:
# These are now standard steps in the Seurat workflow for visualization and clustering
<- RunPCA(synovium, verbose = FALSE)
synovium <- RunUMAP(synovium, dims = 1:30, verbose = FALSE)
synovium <- FindNeighbors(synovium, dims = 1:30, verbose = FALSE) synovium
library(SignacX)
Generate Signac labels for the Seurat object. Note:
# Run Signac
<- Signac(synovium, num.cores = 4)
labels = GenerateLabels(labels, E = synovium) celltypes
SignacX (rows are FACs labels, columns are SignacX)
B | F | M | NonImmune | T | Unclassified | |
---|---|---|---|---|---|---|
B | 945 | 0 | 2 | 0 | 0 | 19 |
F | 0 | 2218 | 10 | 223 | 0 | 58 |
M | 1 | 28 | 891 | 18 | 0 | 96 |
T | 4 | 0 | 0 | 0 | 1768 | 21 |
SingleR (rows are FACs labels, columns are SingleR)
B | Chondr. | F | M | NK | NonImmune | T | |
---|---|---|---|---|---|---|---|
B | 958 | 1 | 0 | 6 | 1 | 0 | 0 |
F | 2 | 1468 | 36 | 19 | 23 | 960 | 1 |
M | 4 | 39 | 0 | 964 | 6 | 21 | 0 |
T | 9 | 0 | 0 | 2 | 368 | 0 | 1414 |
Note:
Signac accuracy
= xy != "Unclassified"
logik = round(sum(xy[logik] == True_labels[logik])/sum(logik) * 100, 2)
Signac_Accuracy Signac_Accuracy
## [1] 95.32
SingleR accuracy
= round(sum(xx == True_labels)/sum(logik) * 100, 2)
SingleR_Accuracy SingleR_Accuracy
## [1] 55.21
Save results
saveRDS(synovium, file = "synovium_signac.rds")
saveRDS(celltypes, file = "synovium_signac_celltypes.rds")
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.5 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## loaded via a namespace (and not attached):
## [1] compiler_4.0.3 magrittr_2.0.1 formatR_1.7 htmltools_0.5.1.1
## [5] tools_4.0.3 yaml_2.2.1 stringi_1.5.3 rmarkdown_2.6
## [9] highr_0.8 knitr_1.30 stringr_1.4.0 digest_0.6.27
## [13] xfun_0.20 rlang_0.4.10 evaluate_0.14
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.