The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This vignette shows how to use SignacFast to annotate flow-sorted synovial cells by integrating SignacX with Seurat. We start with raw counts from this publication.
Read the CEL-seq2 data.
<- function(counts.file, meta.file) {
ReadCelseq = suppressWarnings(readr::read_tsv(counts.file))
E <- E$gene
gns = E[, -1]
E = Matrix::Matrix(as.matrix(E), sparse = TRUE)
E rownames(E) <- gns
E
}
= "./fls/celseq_matrix_ru10_molecules.tsv.gz"
counts.file = "./fls/celseq_meta.immport.723957.tsv"
meta.file
= ReadCelseq(counts.file = counts.file, meta.file = meta.file)
E = suppressWarnings(readr::read_tsv(meta.file))
M
# filter data based on depth and number of genes detected
= Matrix::colSums(E != 0)
kmu = Matrix::colSums(E)
kmu2 = E[, kmu > 200 & kmu2 > 500]
E
# filter by mitochondrial percentage
= grepl("^MT-", rownames(E))
logik = Matrix::colSums(E[logik, ])/Matrix::colSums(E) * 100
MitoFrac = E[, MitoFrac < 20] E
Start with the standard pre-processing steps for a Seurat object.
library(Seurat)
Create a Seurat object, and then perform SCTransform normalization. Note:
# load data
<- CreateSeuratObject(counts = E, project = "FACs")
synovium
# run sctransform
<- SCTransform(synovium) synovium
Perform dimensionality reduction by PCA and UMAP embedding. Note:
# These are now standard steps in the Seurat workflow for visualization and clustering
<- RunPCA(synovium, verbose = FALSE)
synovium <- RunUMAP(synovium, dims = 1:30, verbose = FALSE)
synovium <- FindNeighbors(synovium, dims = 1:30, verbose = FALSE) synovium
library(SignacX)
Generate Signac labels for the Seurat object. Note:
<- Signac(synovium, num.cores = 4)
labels = GenerateLabels(labels, E = synovium) celltypes
Sometimes, training the neural networks takes a lot of time. The above classification took 27 minutes. To make a faster method, we implemented SignacFast which uses pre-trained models. Note:
# Run SignacFast
<- SignacFast(synovium, num.cores = 4)
labels_fast = GenerateLabels(labels_fast, E = synovium) celltypes_fast
Compare results:
Celltypes:B | MPh | NonImmune | Plasma.cells | TNK | Unclassified | |
---|---|---|---|---|---|---|
B | 681 | 0 | 0 | 0 | 0 | 0 |
MPh | 0 | 835 | 0 | 0 | 0 | 68 |
NonImmune | 0 | 0 | 2487 | 0 | 0 | 0 |
Plasma.cells | 0 | 0 | 0 | 263 | 0 | 6 |
TNK | 0 | 0 | 0 | 0 | 1768 | 0 |
Unclassified | 0 | 13 | 7 | 0 | 0 | 174 |
B.memory | B.naive | Fibroblasts | Macrophages | Mon.Classical | NonImmune | Plasma.cells | T.CD4.memory | T.CD4.naive | T.CD8.em | T.CD8.naive | T.regs | Unclassified | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B.memory | 489 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
B.naive | 4 | 184 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
DC | 0 | 0 | 0 | 4 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
Fibroblasts | 0 | 0 | 2110 | 0 | 0 | 136 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Macrophages | 0 | 0 | 0 | 662 | 33 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 73 |
Mon.Classical | 0 | 0 | 0 | 23 | 93 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
NonImmune | 0 | 0 | 74 | 0 | 0 | 166 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
Plasma.cells | 0 | 0 | 0 | 0 | 0 | 1 | 259 | 0 | 0 | 0 | 0 | 0 | 8 |
T.CD4.memory | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 504 | 112 | 17 | 29 | 15 | 0 |
T.CD4.naive | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 309 | 4 | 18 | 0 | 1 |
T.CD8.em | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 7 | 4 | 574 | 1 | 0 | 2 |
T.CD8.naive | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 26 | 2 | 0 |
T.regs | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 27 | 1 | 2 | 106 | 0 |
Unclassified | 0 | 0 | 1 | 12 | 3 | 5 | 0 | 0 | 0 | 1 | 0 | 0 | 179 |
Save results
saveRDS(synovium, file = "fls/seurat_obj_amp_synovium.rds")
saveRDS(celltypes, file = "fls/celltypes_amp_synovium.rds")
saveRDS(celltypes_fast, file = "fls/celltypes_fast_amp_synovium_celltypes.rds")
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.5 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## loaded via a namespace (and not attached):
## [1] compiler_4.0.3 magrittr_2.0.1 formatR_1.7 htmltools_0.5.1.1
## [5] tools_4.0.3 yaml_2.2.1 stringi_1.5.3 rmarkdown_2.6
## [9] highr_0.8 knitr_1.30 stringr_1.4.0 digest_0.6.27
## [13] xfun_0.20 rlang_0.4.10 evaluate_0.14
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.