The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The goal of SemiPar.depCens package is to provide easy to use functions in R for estimation of the dependent censoring methodology proposed by Deresa and Van Keilegom (2024) doi:10.1080/01621459.2022.2161387. The approach presented in the latter paper is based on a parametric copula for the relation between the survival time and the dependent censoring time, and the parameter defining the copula does not need to be known. Instead, the copula parameter is estimated jointly with other finite model parameters by maximizing a Pseudo likelihood function. Available copula functions in SemiPar.depCens package include Frank, Gumbel and Normal copulas. Only Weibull and Lognormal models are allowed for the censoring model, even though any parametric model that satisfies certain identifiability conditions could be used.
The development version of SemiPar.depCens package is available on github. To install it in R, use:
::install_github("Nago2020/SemiPar.depCens") devtools
This is a basic example which shows how to use the package in practice:
# load packages
library(copula)
library(survival)
library(stats)
library(foreach)
library(pbivnorm)
library(SemiPar.depCens)
## load the data
data("follic")
#Prepare the data in the way that is used by the package
= follic[order(follic$time),] # order the observed survival time
follic = round(follic$time,digits = 3)
Z = as.numeric(follic$status==1) # censoring indicator for survival time T
d1 = as.numeric(follic$status==2) # censoring indicator for dependent censoring C
d2 = as.numeric(follic$ch=="Y") # treatment indicator
treat = (follic$age-mean(follic$age))/sd(follic$age) # recommended to standardize continuous variables
age = (follic$hgb-mean(follic$hgb))/sd(follic$hgb) # standardized hemoglobin
hgb = as.numeric(follic$clinstg==1) # clinical stage
clinstg
= cbind(treat,age,hgb,clinstg) # data matrix for T, should be in matrix form
X = cbind(rep(1,length(Z)),treat,age,hgb,clinstg) # data matrix for C, should be in matrix form
W = data.frame("Z" = Z,"d1" = d1, "d2" = d2) # resData should be a data frame resData
The following code fit a default copula, which is Frank, for the relation between the survival time (T) and dependent censoring time (C). The default marginal model for C is a Weibull model. Other capabilities can be explored by typing ?fitDepCens in the console.
<- fitDepCens(resData = resData, X = X, W = W, bootstrap = FALSE) fitD
The output for the above code chunk should look as below. Since bootstrapping = FALSE, it does not make any inference based on p-values; only parameter estimates are shown.
summary(fitD)
#> ----------------------------------------------------------------------------------------------------
#> Summary of dependent censoring model
#> ----------------------------------------------------------------------------------------------------
#> Survival submodel: Cox proportional hazards model
#>
#> Parameter estimates:
#> treat age hgb clinstg
#> -0.347 0.352 0.042 -0.646
#>
#>
#> Censoring submodel: Weibull
#>
#> Intercept treat age hgb clinstg sigma
#> 2.803 0.125 -0.658 -0.038 0.411 0.618
#> ----------------------------------------------------------------------------------------------------
#> Assumed copula model: Frank
#>
#> kendall's tau correlation :
#> tau
#> 0.336
We can do bootstrapping by setting bootstrap = TRUE, but note that the algorithm may take long time to finish the computations, even after parallelization is used to speed up the work. The default number of bootstrap size is 50. Increasing number of bootstrap samples may produce more precise standard error estimates.
<- fitDepCens(resData = resData,X = X, W = W, bootstrap = TRUE, n.boot = 50)
fitD summary(fitD)
#> ----------------------------------------------------------------------------------------------------
#> Summary of dependent censoring model
#> ----------------------------------------------------------------------------------------------------
#>
#> Survival submodel: Cox proportional hazards model
#>
#> Estimate Boot.SE Pvalue
#> treat -0.347 0.170 0.042
#> age 0.352 0.067 0.000
#> hgb 0.042 0.058 0.463
#> clinstg -0.646 0.119 0.000
#>
#>
#> Censoring submodel: Weibull
#>
#> Estimate Boot.SE Pvalue
#> Intercept 2.803 0.135 0.000
#> treat 0.125 0.135 0.356
#> age -0.658 0.071 0.000
#> hgb -0.038 0.051 0.452
#> clinstg 0.411 0.125 0.001
#> sigma 0.618 0.046 0.000
#> ----------------------------------------------------------------------------------------------------
#> Assumed copula model: Frank
#>
#> kendall's tau correlation :
#>
#> tau Boot.SE Pvalue
#> 0.336 0.102 0.001
For independent censoring model, the assumption is that the copula parameter between T and C is zero. Hence, the model is very simplified in terms of computational costs. We obtain results very quickly in comparison to dependent censoring model. The default model for censoring distribution is Weibull.
<- fitIndepCens(resData = resData, X = X, W = W, bootstrap = TRUE, n.boot = 50)
fitIsummary(fitI)
#> ----------------------------------------------------------------------------------------------------
#> Summary of independent censoring model
#> ----------------------------------------------------------------------------------------------------
#> Survival submodel: Cox proportional hazards model
#>
#> Estimate Boot.SE Pvalue
#> treat -0.365 0.174 0.036
#> age 0.329 0.066 0.000
#> hgb 0.041 0.061 0.498
#> clinstg -0.648 0.123 0.000
#>
#>
#> Censoring submodel: Weibull
#>
#> Estimate Boot.SE Pvalue
#> Intercept 3.208 0.143 0.000
#> treat 0.127 0.173 0.465
#> age -0.703 0.087 0.000
#> hgb -0.029 0.070 0.677
#> clinstg 0.333 0.160 0.037
#> sigma 0.608 0.054 0.000
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.