The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The goal of the STSMotif
R package is to allows the
discovery and ranking of a motif in spatial-time series quickly and
efficiently.
A pattern that significantly occurs in a time series is called a
motif. In spatial time series data, these patterns may not be
substantially present in a single time series but dispersed over several
times series, limited in both space and time. The
STMotif R package
was developed to simplify the
Spatio-temporal data mining on the search for these motifs. We present
the functions available in STMotif package
through the
sample dataset, also available in this package.
First, install the package by typing:
Then, load the package by typing:
It provides two categories of functions: for discovering and ranking motifs (CSAMiningProcess) and functions for viewing the identified motifs.
NormSAX
allows the normalization and SAX
indexing of the dataset.
# The process is launched on the provided example dataset
dim(D <- STMotif::example_dataset)
#> [1] 20 12
# Normalizartion and SAX indexing
DS <- NormSAX(D = STMotif::example_dataset,a =5)
# Information of the normalized and SAX indexing dataset
# The candidates built
head(NormSAX(D = STMotif::example_dataset, a = 5)[,1:10])
#>
#> 1 a c c c c c c c e c
#> 2 a a e c e e e c c e
#> 3 c e e e c e d e e e
#> 4 e e b e e d e e d b
#> 5 e c c b b c b c a e
#> 6 b d c a a a b e a d
SearchSTMotifs
allows to check and filter
the stmotifs, grouping the motifs from the neighboring block.# The list of motifs
# stmotifs <- SearchSTMotifs(D,DS,w,a,sb,tb,si,ka)
stmotifs <- SearchSTMotifs(D,DS,4,5,4,10,2,2)
stmotifs[[1]]
#> $isaxcod
#> [1] "ceeb"
#>
#> $recmatrix
#> [,1] [,2] [,3]
#> [1,] 1 0 0
#> [2,] 0 0 0
#>
#> $vecst
#> s t
#> 1 1 3
#> 2 3 1
#> 3 4 2
RankSTMotifs
allows to rank the stmotifs
list, making a balance between distance among the occurrences of a motif
with the encoded information on the motif itself and his quantity.# The rank list of stmotifs
rstmotifs <- RankSTMotifs(stmotifs)
rstmotifs[[1]]
#> $isaxcod
#> [1] "bded"
#>
#> $recmatrix
#> [,1] [,2] [,3]
#> [1,] 0 0 0
#> [2,] 1 1 1
#>
#> $vecst
#> s t
#> 1 1 11
#> 2 2 11
#> 3 4 17
#> 4 5 17
#> 5 8 15
#> 6 10 15
#> 7 12 12
#>
#> $rank
#> $rank$dist
#> [1] 0.5259316
#>
#> $rank$word
#> [1] 1.5
#>
#> $rank$qtd
#> [1] 2.807355
#>
#> $rank$proj
#> [,1]
#> 3 1.522208
4.All this process can be summarized in the function
CSAMiningProcess
which performs all the steps listed
above.
# CSAMiningProcess
stmotifs <- CSAMiningProcess(D,DS,4,5,4,10,2,2)
rstmotifs[[1]]
#> $isaxcod
#> [1] "bded"
#>
#> $recmatrix
#> [,1] [,2] [,3]
#> [1,] 0 0 0
#> [2,] 1 1 1
#>
#> $vecst
#> s t
#> 1 1 11
#> 2 2 11
#> 3 4 17
#> 4 5 17
#> 5 8 15
#> 6 10 15
#> 7 12 12
#>
#> $rank
#> $rank$dist
#> [1] 0.5259316
#>
#> $rank$word
#> [1] 1.5
#>
#> $rank$qtd
#> [1] 2.807355
#>
#> $rank$proj
#> [,1]
#> 3 1.522208
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.