The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

R Markdown

We load de data:


library(tidyverse)
library(caret)
library(SSLR)
library(tidymodels)
data(wine)

data <- iris

set.seed(1)
#% LABELED
cls <- which(colnames(iris) == "Species")

labeled.index <- createDataPartition(data$Species, p = .2, list = FALSE)
data[-labeled.index,cls] <- NA

For example, we can train with Constrained Kmeans:

m <- constrained_kmeans() %>% fit(Species ~ ., data)

Labels:

m %>% cluster_labels()
#> # A tibble: 150 x 1
#>    .pred_class
#>    <fct>      
#>  1 1          
#>  2 1          
#>  3 1          
#>  4 1          
#>  5 1          
#>  6 1          
#>  7 1          
#>  8 1          
#>  9 1          
#> 10 1          
#> # ... with 140 more rows

Centers:

m %>% get_centers()
#>      [,1] [,2] [,3]  [,4]
#> [1,] 5.01 3.43 1.46 0.246
#> [2,] 5.85 2.75 4.32 1.400
#> [3,] 6.76 3.02 5.62 2.013

We can plot clusters with factoextra:

library(factoextra)
fviz_cluster(m$model, as.matrix(data[,-cls]))

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.