The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Welcome to the SMAHP vignette! This document provides an overview of the SMAHP package. SMAHP (Survival Mediation Analysis of High-dimensional Proteogenomic data) is a novel method for survival mediation analysis that simultaneously handles high-dimensional exposures and mediators, integrates multi-omics data, and offers a robust statistical framework for identifying causal pathways on survival outcomes. SMAHP package is a software extension of our methodology work.
We will use the example data built in the package to demonstrate how to use the main function.
The example data is a simulated dataset for demonstration purpose. It contains exposure (X), mediators (M), covariates (C) and survival data (surv_dat).
surv_dat <- example_dat$surv_dat
res <- SMAHP(example_dat$X, example_dat$M, example_dat$C,
time = surv_dat$time, status = surv_dat$status)
#> CV through: ### 20 %
#> CV through: ### ### 40 %
#> CV through: ### ### ### 60 %
#> CV through: ### ### ### ### 80 %
#> CV through: ### ### ### ### ### 100 %
#> Using a basic kernel estimate for local fdr; consider installing the ashr package for more accurate estimation. See ?local_mfdr
#> CV through: ### 20 %
#> CV through: ### ### 40 %
#> CV through: ### ### ### 60 %
#> CV through: ### ### ### ### 80 %
#> CV through: ### ### ### ### ### 100 %
print(res$p_final_matrix)
#> M5 M16 M11 M12 M13 M7
#> X1 NA NA NA NA NA NA
#> X2 NA 8.726353e-14 7.263079e-13 3.916867e-13 0.1832984 NA
#> X3 NA NA NA NA NA NA
#> X4 NA NA NA NA NA NA
#> X5 NA NA NA NA NA NA
#> X6 NA NA NA NA NA NA
#> X7 NA NA NA NA NA NA
#> X8 NA 8.726353e-14 NA 3.916867e-13 0.1832984 NA
#> X9 NA 8.726353e-14 7.263079e-13 3.916867e-13 NA NA
#> X10 NA NA NA NA NA NA
#> X11 NA NA 7.263079e-13 NA 0.1832984 NA
#> X12 NA NA NA NA NA NA
#> X13 NA NA NA NA NA NA
#> X14 NA NA NA NA NA NA
#> X15 NA NA NA NA NA NA
#> X16 NA NA NA NA NA NA
#> X17 NA NA NA NA NA NA
#> X18 NA NA NA NA NA NA
#> X19 NA NA NA NA NA NA
#> X20 NA NA NA NA NA NA
#> X21 NA NA NA NA NA NA
#> X22 NA NA NA NA NA NA
#> X23 NA NA NA NA NA NA
#> X24 NA NA NA NA NA NA
#> X25 0 NA NA NA NA 0.6737463
#> X26 NA NA NA NA NA NA
#> X27 NA NA NA NA NA NA
#> X28 NA NA NA NA NA NA
#> X29 NA NA NA NA NA NA
#> X30 NA NA NA NA NA NA
#> X31 NA NA NA NA NA NA
#> X32 NA NA NA NA NA NA
#> X33 NA NA NA NA NA NA
#> X34 NA NA NA NA NA NA
#> X35 0 NA NA NA NA 0.6737463
#> X36 NA NA NA NA NA NA
#> X37 NA NA NA NA NA NA
#> X38 NA NA NA NA NA NA
#> X39 0 NA NA NA NA 0.6737463
#> X40 NA NA NA NA NA NA
print(res$p_adjusted_matrix)
#> M5 M16 M11 M12 M13 M7
#> X1 NA NA NA NA NA NA
#> X2 NA 3.490541e-12 1.452616e-11 1.044498e-11 1 NA
#> X3 NA NA NA NA NA NA
#> X4 NA NA NA NA NA NA
#> X5 NA NA NA NA NA NA
#> X6 NA NA NA NA NA NA
#> X7 NA NA NA NA NA NA
#> X8 NA 3.490541e-12 NA 1.044498e-11 1 NA
#> X9 NA 3.490541e-12 1.452616e-11 1.044498e-11 NA NA
#> X10 NA NA NA NA NA NA
#> X11 NA NA 1.452616e-11 NA 1 NA
#> X12 NA NA NA NA NA NA
#> X13 NA NA NA NA NA NA
#> X14 NA NA NA NA NA NA
#> X15 NA NA NA NA NA NA
#> X16 NA NA NA NA NA NA
#> X17 NA NA NA NA NA NA
#> X18 NA NA NA NA NA NA
#> X19 NA NA NA NA NA NA
#> X20 NA NA NA NA NA NA
#> X21 NA NA NA NA NA NA
#> X22 NA NA NA NA NA NA
#> X23 NA NA NA NA NA NA
#> X24 NA NA NA NA NA NA
#> X25 0 NA NA NA NA 1
#> X26 NA NA NA NA NA NA
#> X27 NA NA NA NA NA NA
#> X28 NA NA NA NA NA NA
#> X29 NA NA NA NA NA NA
#> X30 NA NA NA NA NA NA
#> X31 NA NA NA NA NA NA
#> X32 NA NA NA NA NA NA
#> X33 NA NA NA NA NA NA
#> X34 NA NA NA NA NA NA
#> X35 0 NA NA NA NA 1
#> X36 NA NA NA NA NA NA
#> X37 NA NA NA NA NA NA
#> X38 NA NA NA NA NA NA
#> X39 0 NA NA NA NA 1
#> X40 NA NA NA NA NA NA
print(res$p_med_matrix)
#> M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20
#> X1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X2 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0
#> X3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X8 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
#> X9 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0
#> X10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
#> X12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X25 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X35 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X39 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> X40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
The main function returns a list containing three matrices: (1) p_final_matrix, which is the raw p-value before adjustment, (2) p_adjusted_matrix, which contains p-values adjusted using the selected adjustment method, and (3) p_med_matrix, a mediation-exposure matrix encoded with 0s and 1s. In p_med_matrix, a value of 1 indicates a detected mediation association, while 0 means no significant mediation association. The NAs in p_final_matrix and p_adjusted_matrix mean the exposure-mediator pairs were not selected in previous steps.
The function get_sig_pathway can be used to extract the the name of exposure and mediator from identified significant mediation pathways with related adjusted p-values.
get_sig_pathway(res_SMAHP = res)
#> X M adjusted_pvalue
#> <char> <char> <num>
#> 1: X25 M5 0.000000e+00
#> 2: X35 M5 0.000000e+00
#> 3: X39 M5 0.000000e+00
#> 4: X2 M11 1.452616e-11
#> 5: X9 M11 1.452616e-11
#> 6: X11 M11 1.452616e-11
#> 7: X2 M12 1.044498e-11
#> 8: X8 M12 1.044498e-11
#> 9: X9 M12 1.044498e-11
#> 10: X2 M16 3.490541e-12
#> 11: X8 M16 3.490541e-12
#> 12: X9 M16 3.490541e-12
The function get_coef can be used to extract the the name of exposure and mediator from identified significant mediation pathways with related coefficient estimates.
get_coef(res_SMAHP = res)
#> X M beta1 beta2 beta3
#> <char> <char> <num> <num> <num>
#> 1: X25 M5 0.7848745 4.499896 -0.24182382
#> 2: X35 M5 0.7398743 4.499896 -0.64624279
#> 3: X39 M5 0.6538620 4.499896 -0.53052986
#> 4: X2 M11 0.7700538 3.871182 -0.70411160
#> 5: X9 M11 0.8267428 3.871182 -1.02512189
#> 6: X11 M11 0.7483066 3.871182 -0.86970220
#> 7: X2 M12 0.7796968 3.851632 -0.70411160
#> 8: X8 M12 0.8338865 3.851632 0.06451432
#> 9: X9 M12 0.7770952 3.851632 -1.02512189
#> 10: X2 M16 0.7564046 4.182464 -0.70411160
#> 11: X8 M16 0.7814212 4.182464 0.06451432
#> 12: X9 M16 0.8198452 4.182464 -1.02512189
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.