The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

SLTCA: Scalable and Robust Latent Trajectory Class Analysis

Conduct latent trajectory class analysis with longitudinal data. Our method supports longitudinal continuous, binary and count data. For more methodological details, please refer to Hart, K.R., Fei, T. and Hanfelt, J.J. (2020), Scalable and robust latent trajectory class analysis using artificial likelihood. Biometrics <doi:10.1111/biom.13366>.

Version: 0.1.0
Depends: R (≥ 3.3.0)
Imports: stats, geepack, VGAM, Matrix, mvtnorm
Published: 2020-09-23
DOI: 10.32614/CRAN.package.SLTCA
Author: Kari Hart [aut], Teng Fei ORCID iD [cre, aut], John Hanfelt ORCID iD [aut]
Maintainer: Teng Fei <tfei at emory.edu>
BugReports: https://github.com/tengfei-emory/SLTCA/issues
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
CRAN checks: SLTCA results

Documentation:

Reference manual: SLTCA.pdf

Downloads:

Package source: SLTCA_0.1.0.tar.gz
Windows binaries: r-devel: SLTCA_0.1.0.zip, r-release: SLTCA_0.1.0.zip, r-oldrel: SLTCA_0.1.0.zip
macOS binaries: r-release (arm64): SLTCA_0.1.0.tgz, r-oldrel (arm64): SLTCA_0.1.0.tgz, r-release (x86_64): SLTCA_0.1.0.tgz, r-oldrel (x86_64): SLTCA_0.1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=SLTCA to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.