The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Title: Shrinkage for Extreme Partial Least-Squares (SEPaLS)
Date: 2023-10-11
Type: Package
Version: 0.1.0
Description: Regression context for the Partial Least Squares framework for Extreme values. Estimations of the Shrinkage for Extreme Partial Least-Squares (SEPaLS) estimators, an adaptation of the original Partial Least Squares (PLS) method tailored to the extreme-value framework. The SEPaLS project is a joint work by Stephane Girard, Hadrien Lorenzo and Julyan Arbel. R code to replicate the results of the paper is available at https://github.com/hlorenzo/SEPaLS_simus. Extremes within PLS was already studied by one of the authors, see M Bousebeta, G Enjolras, S Girard (2023) <doi:10.1016/j.jmva.2022.105101>.
License: MIT + file LICENSE
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.2.0
NeedsCompilation: no
Packaged: 2023-10-23 21:11:42 UTC; hlorenzo
Author: Stephane Girard [aut], Julyan Arbel [aut], Hadrien Lorenzo [aut, cre, cph]
Maintainer: Hadrien Lorenzo <hadrien.lorenzo@univ-amu.fr>
Depends: R (≥ 3.5.0)
Repository: CRAN
Date/Publication: 2023-10-24 18:20:06 UTC

Function to estimate SEPaLS estimators

Description

Function to estimate SEPaLS estimators

Usage

SEPaLS(
  X,
  Y,
  yn,
  type = c("vMF", "Laplace"),
  mu0 = NULL,
  kappa0 = NULL,
  lambda = NULL
)

Arguments

X

(n\times p)-dimensional matrix of the covariates.

Y

(n)-dimensional vector of the response.

yn

y_n the quantile correponding to lowest values of Ys to put in th e tail.

type

character, wether vMF for von Mises-Fisher prior or Laplace for Laplace prior. See details.

mu0

\mu_0, unitary (p)-dimensional vector. The direction parameter for the vMF prior.

kappa0

\kappa_0, positive. The concentration parameter for the vMF prior.

lambda

\lambda, positive. The concentration parameter for the Laplace prior.

Details

The SEPaLS estimators are built depending on the value given to type:

Value

A SEPaLS estimator

See Also

bootstrap.SEPaLS

Examples

set.seed(1)
n <- 3000
p <- 10
X <- matrix(rnorm(n*p),n,p)
beta <- c(5:1,rep(0,p-5)) ; beta <- beta/sqrt(sum(beta^2))
Y <- (X%*%beta)^3 + rnorm(n,sd=1/3)
mu0 <- rnorm(p) ; mu0 <- mu0/sqrt(sum(mu0^2))
sepals_vMF <- SEPaLS(X,Y,yn=1,type="vMF",mu0=mu0,kappa0=1)
sepals_Laplace <- SEPaLS(X,Y,yn=1,type="Laplace",lambda=0.01)

Bootstrap function for SEPaLS estimator.

Description

Bootstrap function for SEPaLS estimator.

Usage

bootstrap.SEPaLS(
  X,
  Y,
  yn,
  type = c("vMF", "Laplace"),
  mu0 = NULL,
  kappa0 = NULL,
  lambda = NULL,
  B = 20
)

Arguments

X

(n\times p)-dimensional matrix of the covariates.

Y

(n)-dimensional vector of the response.

yn

y_n the quantile corresponding to lowest values of Ys to put in the tail.

type

character, whether vMF for von Mises-Fisher prior or Laplace for Laplace prior. See details.

mu0

\mu_0, unitary (p)-dimensional vector. The direction parameter for the vMF prior.

kappa0

\kappa_0, positive. The concentration parameter for the vMF prior.

lambda

\lambda, positive. The concentration parameter for the Laplace prior.

B

positive integer. The number of bootstrap samples on which estimate the SEPaLS directions. Default to 20.

Value

A list with two elements:

See Also

SEPaLS

Examples

set.seed(5)
n <- 3000
p <- 10
X <- matrix(rnorm(n*p),n,p)
beta <- c(5:1,rep(0,p-5)) ; beta <- beta/sqrt(sum(beta^2))
Y <- (X%*%beta)^3 + rnorm(n)
boot.sepals_Laplace <- bootstrap.SEPaLS(X,Y,yn=1,type="Laplace",lambda=0.01,
B=100)
boxplot(boot.sepals_Laplace$ws);abline(h=0,col="red",lty=2)

Maximum Likelihood estimator

Description

Maximum Likelihood estimator

Usage

maximum_Likelihood_SEPaLS(X, Y, yn)

Arguments

X

(n\times p)-dimensional matrix of the covariates.

Y

(n)-dimensional vector of the response.

yn

the quantile corresponding to the lowest values of Ys to put in the tail.

Value

The maximum likelihood estimator.

Examples

n <- 3000
p <- 10
X <- matrix(rnorm(n*p),n,p)
beta <- c(5:1,rep(0,p-5)) ; beta <- beta/sqrt(sum(beta^2))
Y <- X%*%beta + rnorm(n,sd=1/3)
estimators <- do.call(rbind,lapply(seq(0,1,length.out=100),function(pp){
  yn <- quantile(Y,probs = pp)
  maximum_Likelihood_SEPaLS(X,Y,yn)
}))
matplot(estimators,type="l",lty=1,col=c(rep(2,5),rep(1,p-5)))
abline(h=beta/sqrt(sum(beta^2)),col=c(rep(2,5),rep(1,p-5)))

The RICA dataset describing the production of carrots (open field) (in quintals) from 2000 to 2015.

Description

A subset of data from the 'agreste' French governmental website <https://agreste.agriculture.gouv.fr/agreste-web/servicon/I.2/listeTypeServicon/>.

Usage

data(ricaCarrots)

Format

'ricaCarrots'

A List of 3 objects:

Y

a vector. The production of carrots (open field) (in quintals) for 598 French farms.

X

a matrix. The 259 covariates describing the same 598 French farms.

description

a matrix. Description of the 259 covariates.

Source

<https://agreste.agriculture.gouv.fr/agreste-web/servicon/I.2/listeTypeServicon/>

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.