The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

SBICgraph: Structural Bayesian Information Criterion for Graphical Models

This is the implementation of the novel structural Bayesian information criterion by Zhou, 2020 (under review). In this method, the prior structure is modeled and incorporated into the Bayesian information criterion framework. Additionally, we also provide the implementation of a two-step algorithm to generate the candidate model pool.

Version: 1.0.0
Imports: glmnet, MASS, network
Suggests: knitr, rmarkdown
Published: 2021-03-02
DOI: 10.32614/CRAN.package.SBICgraph
Author: Quang Nguyen ORCID iD [cre, aut], Jie Zhou [aut], Anne Hoen [aut], Jiang Gui [aut]
Maintainer: Quang Nguyen <Quang.P.Nguyen.GR at dartmouth.edu>
License: GPL-3
NeedsCompilation: no
Materials: README NEWS
CRAN checks: SBICgraph results

Documentation:

Reference manual: SBICgraph.pdf
Vignettes: overview (source, R code)

Downloads:

Package source: SBICgraph_1.0.0.tar.gz
Windows binaries: r-devel: SBICgraph_1.0.0.zip, r-release: SBICgraph_1.0.0.zip, r-oldrel: SBICgraph_1.0.0.zip
macOS binaries: r-release (arm64): SBICgraph_1.0.0.tgz, r-oldrel (arm64): SBICgraph_1.0.0.tgz, r-release (x86_64): SBICgraph_1.0.0.tgz, r-oldrel (x86_64): SBICgraph_1.0.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=SBICgraph to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.