The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(Ryacas)
library(Matrix)
Consider \(AR(1)\) process: \(x_i = a x_{i-1} + e_i\) where \(i=1,2,3\) and where \(x_0=e_0\). Isolating error terms gives that \[ e = L_1 x \] where \(e=(e_0, \dots, e_3)\) and \(x=(x_0, \dots x_3)\) and where \(L_1\) has the form
<- 3
N <- diag("1", 1 + N)
L1chr cbind(1+(1:N), 1:N)] <- "-a"
L1chr[<- ysym(L1chr)
L1s L1s
## {{ 1, 0, 0, 0},
## {-a, 1, 0, 0},
## { 0, -a, 1, 0},
## { 0, 0, -a, 1}}
If error terms have variance \(1\) then \(\mathbf{Var}(e)=L \mathbf{Var}(x) L'\) so the covariance matrix \(V1=\mathbf{Var}(x) = L^- (L^-)'\) while the concentration matrix is \(K=L L'\)
<- L1s %*% t(L1s)
K1s <- solve(K1s) V1s
cat(
"\\begin{align} K_1 &= ", tex(K1s), " \\\\
V_1 &= ", tex(V1s), " \\end{align}", sep = "")
\[\begin{align} K_1 &= \left( \begin{array}{cccc} 1 & - a & 0 & 0 \\ - a & a ^{2} + 1 & - a & 0 \\ 0 & - a & a ^{2} + 1 & - a \\ 0 & 0 & - a & a ^{2} + 1 \end{array} \right) \\ V_1 &= \left( \begin{array}{cccc} a ^{2} + a ^{4} + a ^{6} + 1 & a + a ^{3} + a ^{5} & a ^{2} + a ^{4} & a ^{3} \\ a + a ^{3} + a ^{5} & a ^{2} + a ^{4} + 1 & a + a ^{3} & a ^{2} \\ a ^{2} + a ^{4} & a + a ^{3} & a ^{2} + 1 & a \\ a ^{3} & a ^{2} & a & 1 \end{array} \right) \end{align}\]
Augument the \(AR(1)\) process above with \(y_i=b x_i + u_i\). Then \((e,u)\) can be expressed in terms of \((x,y)\) as \[ (e,u) = L_2(x,y) \] where
<- 3
N <- diag("1", 1 + 2*N)
L2chr cbind(1+(1:N), 1:N)] <- "-a"
L2chr[cbind(1 + N + (1:N), 1 + 1:N)] <- "-b"
L2chr[<- ysym(L2chr)
L2s L2s
## {{ 1, 0, 0, 0, 0, 0, 0},
## {-a, 1, 0, 0, 0, 0, 0},
## { 0, -a, 1, 0, 0, 0, 0},
## { 0, 0, -a, 1, 0, 0, 0},
## { 0, -b, 0, 0, 1, 0, 0},
## { 0, 0, -b, 0, 0, 1, 0},
## { 0, 0, 0, -b, 0, 0, 1}}
<- L2s %*% t(L2s)
K2s <- solve(K2s)
V2s # Try simplify; causes timeout on CRAN Fedora, hence in try() call.
# Else, just use
# V2s <- simplify(solve(K2s))
try(V2s <- simplify(V2s), silent = TRUE)
cat(
"\\begin{align} K_2 &= ", tex(K2s), " \\\\
V_2 &= ", tex(V2s), " \\end{align}", sep = "")
\[\begin{align} K_2 &= \left( \begin{array}{ccccccc} 1 & - a & 0 & 0 & 0 & 0 & 0 \\ - a & a ^{2} + 1 & - a & 0 & - b & 0 & 0 \\ 0 & - a & a ^{2} + 1 & - a & a b & - b & 0 \\ 0 & 0 & - a & a ^{2} + 1 & 0 & a b & - b \\ 0 & - b & b a & 0 & b ^{2} + 1 & 0 & 0 \\ 0 & 0 & - b & b a & 0 & b ^{2} + 1 & 0 \\ 0 & 0 & 0 & - b & 0 & 0 & b ^{2} + 1 \end{array} \right) \\ V_2 &= \left( \begin{array}{ccccccc} a ^{6} b ^{2} + a ^{6} + a ^{4} b ^{2} + a ^{4} + a ^{2} b ^{2} + a ^{2} + 1 & a ^{5} b ^{2} + a ^{5} + a ^{3} b ^{2} + a ^{3} + a b ^{2} + a & a ^{4} b ^{2} + a ^{4} + a ^{2} b ^{2} + a ^{2} & a ^{3} b ^{2} + a ^{3} & a b & b a ^{2} & b a ^{3} \\ a ^{5} b ^{2} + a ^{5} + a ^{3} b ^{2} + a ^{3} + a b ^{2} + a & a ^{4} b ^{2} + a ^{4} + a ^{2} b ^{2} + a ^{2} + b ^{2} + 1 & a ^{3} b ^{2} + a ^{3} + a b ^{2} + a & a ^{2} b ^{2} + a ^{2} & b & a b & b a ^{2} \\ a ^{4} b ^{2} + a ^{4} + a ^{2} b ^{2} + a ^{2} & a ^{3} b ^{2} + a ^{3} + a b ^{2} + a & a ^{2} b ^{2} + a ^{2} + b ^{2} + 1 & a b ^{2} + a & 0 & b & a b \\ a ^{3} b ^{2} + a ^{3} & a ^{2} b ^{2} + a ^{2} & a b ^{2} + a & b ^{2} + 1 & 0 & 0 & b \\ b a & b & 0 & 0 & 1 & 0 & 0 \\ b a ^{2} & b a & b & 0 & 0 & 1 & 0 \\ b a ^{3} & b a ^{2} & b a & b & 0 & 0 & 1 \end{array} \right) \end{align}\]
<- function(x) {
sparsify if (requireNamespace("Matrix", quietly = TRUE)) {
library(Matrix)
return(Matrix::Matrix(x, sparse = TRUE))
}
return(x)
}
<- 0.5
alpha <- -0.3
beta
## AR(1)
<- 3
N <- diag(1, 1 + N)
L1 cbind(1+(1:N), 1:N)] <- -alpha
L1[<- L1 %*% t(L1)
K1 <- solve(K1)
V1 sparsify(K1)
## 4 x 4 sparse Matrix of class "dsCMatrix"
##
## [1,] 1.0 -0.50 . .
## [2,] -0.5 1.25 -0.50 .
## [3,] . -0.50 1.25 -0.50
## [4,] . . -0.50 1.25
sparsify(V1)
## 4 x 4 sparse Matrix of class "dsCMatrix"
##
## [1,] 1.328125 0.65625 0.3125 0.125
## [2,] 0.656250 1.31250 0.6250 0.250
## [3,] 0.312500 0.62500 1.2500 0.500
## [4,] 0.125000 0.25000 0.5000 1.000
## Dynamic linear models
<- 3
N <- diag(1, 1 + 2*N)
L2 cbind(1+(1:N), 1:N)] <- -alpha
L2[cbind(1 + N + (1:N), 1 + 1:N)] <- -beta
L2[<- L2 %*% t(L2)
K2 <- solve(K2)
V2 sparsify(K2)
## 7 x 7 sparse Matrix of class "dsCMatrix"
##
## [1,] 1.0 -0.50 . . . . .
## [2,] -0.5 1.25 -0.50 . 0.30 . .
## [3,] . -0.50 1.25 -0.50 -0.15 0.30 .
## [4,] . . -0.50 1.25 . -0.15 0.30
## [5,] . 0.30 -0.15 . 1.09 . .
## [6,] . . 0.30 -0.15 . 1.09 .
## [7,] . . . 0.30 . . 1.09
sparsify(V2)
## 7 x 7 sparse Matrix of class "dsCMatrix"
##
## [1,] 1.3576563 0.7153125 0.340625 0.13625 -0.15 -0.075 -0.0375
## [2,] 0.7153125 1.4306250 0.681250 0.27250 -0.30 -0.150 -0.0750
## [3,] 0.3406250 0.6812500 1.362500 0.54500 . -0.300 -0.1500
## [4,] 0.1362500 0.2725000 0.545000 1.09000 . . -0.3000
## [5,] -0.1500000 -0.3000000 . . 1.00 . .
## [6,] -0.0750000 -0.1500000 -0.300000 . . 1.000 .
## [7,] -0.0375000 -0.0750000 -0.150000 -0.30000 . . 1.0000
Comparing with results calculated by yacas:
<- eval(yac_expr(V1s), list(a = alpha))
V1s_eval <- eval(yac_expr(V2s), list(a = alpha, b = beta))
V2s_eval all.equal(V1, V1s_eval)
## [1] TRUE
all.equal(V2, V2s_eval)
## [1] TRUE
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.