The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

The structure of the concentration and covariance matrix in a naive Bayes model

Mikkel Meyer Andersen and Søren Højsgaard

2023-01-16

library(Ryacas)

Naive Bayes model

Consider this model: \[ x_i = a x_0 + e_i, \quad i=1, \dots, 4 \] and \(x_0=e_0\). All terms \(e_0, \dots, e_3\) are independent and \(N(0,1)\) distributed. Let \(e=(e_0, \dots, e_3)\) and \(x=(x_0, \dots x_3)\). Isolating error terms gives that \[ e = L_1 x \] where \(L_1\) has the form

L1chr <- diag(4)
L1chr[2:4, 1] <- "-a"
L1 <- ysym(L1chr)
L1
## {{ 1,  0,  0,  0},
##  {-a,  1,  0,  0},
##  {-a,  0,  1,  0},
##  {-a,  0,  0,  1}}

If error terms have variance \(1\) then \(\mathbf{Var}(e)=L \mathbf{Var}(x) L'\) so the covariance matrix is \(V1=\mathbf{Var}(x) = L^- (L^-)'\) while the concentration matrix (the inverse covariances matrix) is \(K=L' L\).

L1inv <- solve(L1)
K1 <- t(L1) %*% L1
V1 <- L1inv %*% t(L1inv)
cat(
  "\\begin{align} 
    K_1 &= ", tex(K1), " \\\\ 
   V_1 &= ", tex(V1), " 
  \\end{align}", sep = "")

\[\begin{align} K_1 &= \left( \begin{array}{cccc} 3 a ^{2} + 1 & - a & - a & - a \\ - a & 1 & 0 & 0 \\ - a & 0 & 1 & 0 \\ - a & 0 & 0 & 1 \end{array} \right) \\ V_1 &= \left( \begin{array}{cccc} 1 & a & a & a \\ a & a ^{2} + 1 & a ^{2} & a ^{2} \\ a & a ^{2} & a ^{2} + 1 & a ^{2} \\ a & a ^{2} & a ^{2} & a ^{2} + 1 \end{array} \right) \end{align}\]

Slightly more elaborate:

L2chr <- diag(4)
L2chr[2:4, 1] <- c("-a1", "-a2", "-a3")
L2 <- ysym(L2chr)
L2
## {{  1,   0,   0,   0},
##  {-a1,   1,   0,   0},
##  {-a2,   0,   1,   0},
##  {-a3,   0,   0,   1}}
Vechr <- diag(4)
Vechr[cbind(1:4, 1:4)] <- c("w1", "w2", "w2", "w2")
Ve <- ysym(Vechr)
Ve
## {{w1,  0,  0,  0},
##  { 0, w2,  0,  0},
##  { 0,  0, w2,  0},
##  { 0,  0,  0, w2}}
L2inv <- solve(L2)
K2 <- t(L2) %*% solve(Ve) %*% L2
V2 <- L2inv %*% Ve %*% t(L2inv)
cat(
  "\\begin{align} 
    K_2 &= ", tex(K2), " \\\\ 
   V_2 &= ", tex(V2), " 
  \\end{align}", sep = "")

\[\begin{align} K_2 &= \left( \begin{array}{cccc} \frac{1}{w_{1}} + \frac{a_{1} ^{2}}{w_{2}} + \frac{a_{2} ^{2}}{w_{2}} + \frac{a_{3} ^{2}}{w_{2}} & \frac{ - a_{1}}{w_{2}} & \frac{ - a_{2}}{w_{2}} & \frac{ - a_{3}}{w_{2}} \\ \frac{ - a_{1}}{w_{2}} & \frac{1}{w_{2}} & 0 & 0 \\ \frac{ - a_{2}}{w_{2}} & 0 & \frac{1}{w_{2}} & 0 \\ \frac{ - a_{3}}{w_{2}} & 0 & 0 & \frac{1}{w_{2}} \end{array} \right) \\ V_2 &= \left( \begin{array}{cccc} w_{1} & w_{1} a_{1} & w_{1} a_{2} & w_{1} a_{3} \\ a_{1} w_{1} & w_{1} a_{1} ^{2} + w_{2} & a_{1} w_{1} a_{2} & a_{1} w_{1} a_{3} \\ a_{2} w_{1} & a_{2} w_{1} a_{1} & w_{1} a_{2} ^{2} + w_{2} & a_{2} w_{1} a_{3} \\ a_{3} w_{1} & a_{3} w_{1} a_{1} & a_{3} w_{1} a_{2} & w_{1} a_{3} ^{2} + w_{2} \end{array} \right) \end{align}\]

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.