The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
## Registered S3 methods overwritten by 'evd':
## method from
## print.bvpot POT
## plot.bvpot POT
timeStamps=data$time
dt = difftime(timeStamps[2],timeStamps[1],units="days")
dt= as.numeric(dt)
percentile=95
names(data)=c("date","Qs")
if (haz=="drought"){
#seasonality divide: frost vs non frost
if (!exists("trans")){trans="rev"}
print(paste0(trans," transformation used for low flows"))
#compute 7days moving average
data$Q7=tsEvaNanRunningMean(data$Qs,7/dt)
timeAndSeries=data.frame(data$date,data$Q7)
}else if (haz=="flood"){
percentile=95
timeAndSeries <- max_daily_value(timeAndSeries)
}
## [1] "rev transformation used for low flows"
names(timeAndSeries)=c("timestamp","dis")
dt1=min(diff(timeAndSeries$timestamp),na.rm=T)
dt=as.numeric(dt1)
tdim=attributes(dt1)$units
if (tdim=="hours") dt=dt/24
if (dt==1){
timeDays=timeAndSeries$timestamp
}else{
timeDays=unique(as.Date(timeAndSeries$timestamp))
}
names(timeAndSeries)=c("timestamp","data")
trendtypes=c("trend","trendPeaks","trendCIPercentile")
Choose which transformation to use, here we choose the “trendPeaks” transformation
Nonstat<-TsEvaNs(timeAndSeries, timeWindow, transfType=trendtypes[2],
ciPercentile= 90, minPeakDistanceInDays = minPeakDistanceInDays, tail=tail, lowdt=lowdt,trans=trans)
##
## evaluating long term variations of the peaks
## no change point
##
## computing the trend on extremes...
## trend threshold= 0.75
##
## Executing stationary eva
##
## max threshold is: 95%
##
## average number of events per year = 1
## Fitted GPD
##
## Transforming to non stationary eva ...
nonStationaryEvaParams=Nonstat[[1]]
stationaryTransformData=Nonstat[[2]]
ExRange= c(min(nonStationaryEvaParams$potObj$parameters$peaks),max(nonStationaryEvaParams$potObj$parameters$peaks))
if (haz=="flood") wr2 <- c(seq(min(ExRange),max(ExRange),length.out=700))
if (haz=="drought") wr2 <- c(seq(1.1*min(ExRange),0.1*max(ExRange),length.out=700))
Plot1= tsEvaPlotGPDImageScFromAnalysisObj(wr2, nonStationaryEvaParams, stationaryTransformData, minYear = '1950',trans=trans)
Plot1
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.