Package ‘RegimeChange’

February 13, 2026

Title Comprehensive Regime Change Detection in Time Series
Version 0.1.1

Description A unified framework for detecting regime changes (changepoints) in
time series data. Implements both frequentist methods including Cumulative Sum
(CUSUM, Page (1954) <doi:10.1093/biomet/41.1-2.100>), Pruned Exact Linear
Time (PELT, Killick, Fearnhead, and Eckley (2012)
<doi:10.1080/01621459.2012.737745>), Binary Segmentation, and Wild Binary
Segmentation, as well as Bayesian methods such as Bayesian Online Changepoint
Detection (BOCPD, Adams and MacKay (2007) <doi:10.48550/arXiv.0710.3742>
and Shiryaev-Roberts. Supports offline analysis for retrospective detection
and online monitoring for real-time surveillance. Provides rigorous
uncertainty quantification through confidence intervals and posterior
distributions. Handles univariate and multivariate series with detection of
changes in mean, variance, trend, and distributional properties.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.3

Depends R (>=4.0.0)

Imports stats, ggplot2 (>= 3.4.0), rlang (>= 1.1.0), cli (>=3.6.0),
magrittr

Suggests testthat (>= 3.0.0), knitr, rmarkdown, plotly, patchwork,
covr, JuliaCall (>= 0.17.0), keras (>= 2.9.0), tensorflow (>=
2.9.0), reticulate (>= 1.26)

VignetteBuilder knitr
Config/testthat/edition 3

URL https://github.com/IsadoreNabi/RegimeChange

BugReports https://github.com/IsadoreNabi/RegimeChange/issues
LazyData true

SystemRequirements Julia (>= 1.6) for optional high-performance
backend, Python (>= 3.8) with TensorFlow for deep learning
methods

https://doi.org/10.1093/biomet/41.1-2.100
https://doi.org/10.1080/01621459.2012.737745
https://doi.org/10.48550/arXiv.0710.3742
https://github.com/IsadoreNabi/RegimeChange
https://github.com/IsadoreNabi/RegimeChange/issues

2 Contents

NeedsCompilation no

Author José Mauricio Gémez Julian [aut, cre] (ORCID:
<https://orcid.org/0009-0000-2412-3150>)

Maintainer José Mauricio Gémez Julidn <isadorenabi@pm.me>
Repository CRAN
Date/Publication 2026-02-13 16:34:59 UTC

Contents
RegimeChange-package 3
adjusted_rand_index e 4
autoencoder_detect e e e e e e e e e e 4
benchmark backends 5
binary_segmentationo e 6
bocpd e 7
compare_methods 8
constant_hazard e 9
COVEIING_MEMIIC v v v vttt e et e e e e e e e e e e e e 10
cpe_detect L e e e e e 10
crops_detect L e e 11
CUSUIM & . v v et e 12
detect_pelt L 13
detect_Iegimes i i e e e e e e e e e e e e 15
economic_cycles e 17
edivisive_detect e 18
ensemble_dl_detect e 19
evaluate e e e e e e e e e 19
evaluation L e 20
fl_oscore L e 20
fpop_detect e 21
geometric_hazard 22
hausdorff_distance e e 22
industrial_Sensor e e e e 23
mit_juliao 24
INVErSe_GaMMA_VAT« v v v v v v et e e e e e e e e e e e e e e 25
julia_availableo e 25
julia_status L e 26
kernel_cpd_detect e 26
mean_absolute error e e e e e e e 27
negbin_hazard 27
normal_gamma L. e e e e e e 28
normal_known_var e 29
normal_wishart e 29
nOot_detect e e e 30
Pelt . e 31

plotregime_result 32

https://orcid.org/0009-0000-2412-3150

RegimeChange-package 3

Index

PlOt_Compare e e e e e e e e e e e 33
plot_interactive e e e e e e 33
PlOL_SUMMATY ot e e e e e e e e e e e 34
POISSON_ZAMMA ot v vt bttt e e e e e e e e 34
PIECISION_SCOIC . . .« « v v v v e e et et e e e e e e e 35
rand_indexX L e 35
recall_SCOTE s 36
regime_detector e e e e e e e e e e 36
TESEL . o o i e e e e e e e e e e e e e e 37
rmse_changepoints e e e e 38
shiryaev_roberts e e 38
simulated_changepoints 39
sparse_projection_cpd e 41
ten_detect e e e e 41
transformer_detect e e e 43
update.regime_detectoro L e e e e e e e e e e 44
well_log e 44
wild_binary_segmentation L L 45

47

RegimeChange-package RegimeChange: Comprehensive Regime Change Detection in Time

Series

Description

A unified framework for detecting regime changes (changepoints) in time series data. Implements

both

frequentist methods including Cumulative Sum (CUSUM, Page (1954) doi:10.1093/biomet/

41.12.100), Pruned Exact Linear Time (PELT, Killick, Fearnhead, and Eckley (2012) doi:10.1080/
01621459.2012.737745), Binary Segmentation, and Wild Binary Segmentation, as well as Bayesian
methods such as Bayesian Online Changepoint Detection (BOCPD, Adams and MacKay (2007)
https://arxiv.org/abs/0710.3742) and Shiryaev-Roberts. Supports offline analysis for retro-
spective detection and online monitoring for real-time surveillance. Provides rigorous uncertainty
quantification through confidence intervals and posterior distributions. Handles univariate and mul-
tivariate series with detection of changes in mean, variance, trend, and distributional properties.

Author(s)

Maintainer: José Mauricio Gémez Julidn <isadorenabi@pm.me> (ORCID)

See Also

Useful links:

https://github.com/IsadoreNabi/RegimeChange
Report bugs at https://github.com/IsadoreNabi/RegimeChange/issues

https://doi.org/10.1093/biomet/41.1-2.100
https://doi.org/10.1093/biomet/41.1-2.100
https://doi.org/10.1080/01621459.2012.737745
https://doi.org/10.1080/01621459.2012.737745
https://arxiv.org/abs/0710.3742
https://orcid.org/0009-0000-2412-3150
https://github.com/IsadoreNabi/RegimeChange
https://github.com/IsadoreNabi/RegimeChange/issues

autoencoder_detect(

data,
window_size

= 50,

latent_dim = 10,

hidden_dims

= c(32, 16),

epochs = 100,

batch_size
threshold =

32,
NULL,

contamination = 0.1,

variational

= FALSE,

verbose = FALSE

4 autoencoder_detect
adjusted_rand_index Adjusted Rand Index
Description
Rand Index corrected for chance agreement.
Usage
adjusted_rand_index(detected, true_cp, n)
Arguments
detected Vector of detected changepoint locations
true_cp Vector of true changepoint locations
n Total number of observations
Value
Adjusted Rand Index (can be negative, 1 is perfect)
autoencoder_detect Autoencoder-based Changepoint Detection
Description
Detects changepoints by identifying regions where reconstruction error is anomalously high, indi-
cating the model (trained on normal patterns) fails to reconstruct the data.
Usage

benchmark_backends 5

Arguments
data Numeric vector of time series data
window_size Size of sliding window (default: 50)
latent_dim Dimension of latent space (default: 10)
hidden_dims Hidden layer dimensions (default: c(32, 16))
epochs Training epochs (default: 100)
batch_size Batch size (default: 32)
threshold Threshold for anomaly detection. NULL for automatic selection using 3-sigma

rule.

contamination Expected proportion of anomalies for threshold selection (default: 0.1)

variational Use Variational Autoencoder (default: FALSE)

verbose Show training progress (default: FALSE)
Value

List with:

changepoints Detected changepoint locations
reconstruction_error
Per-window reconstruction error

threshold Threshold used for detection

model Trained Keras model
Examples

Not run:

data <- c(rnorm(100), rnorm(100, mean = 3), rnorm(100))
result <- autoencoder_detect(data, window_size = 30)
plot(result$reconstruction_error, type = "1")

abline(v = result$changepoints, col = "red")

End(Not run)

benchmark_backends Benchmark Julia vs R Performance

Description

Compare execution time between Julia and R implementations.

Usage

benchmark_backends(data, method = "pelt”, n_reps = 10, ...)

Arguments

data
method

n_reps

Value

binary_segmentation

Test data.
Method to benchmark.
Number of repetitions.

Additional arguments for the method.

Data frame with timing results (invisibly).

Examples

data <- c(rnorm(500), rnorm(500, 3))
benchmark_backends(data, method = "pelt”, penalty = log(1000))

binary_segmentation Binary Segmentation Changepoint Detection

Description

Recursive binary segmentation for changepoint detection. Greedy algorithm that recursively splits
at the best changepoint.

Usage
binary_segmentation(
data,
type = "both"”,

penalty = "BIC",
min_segment = 2,
n_changepoints = "multiple”,
threshold = NULL,

Arguments
data
type
penalty
min_segment
n_changepoints
threshold

Numeric vector or matrix

Type of change to detect

Penalty for adding changepoints

Minimum segment length

Maximum number of changepoints to detect
Significance threshold

Additional arguments

bocpd 7

Value

List with changepoints

Examples

data <- c(rnorm(10@), rnorm(100, mean = 2))
result <- binary_segmentation(data)

bocpd Bayesian Online Changepoint Detection

Description

Implements the BOCPD algorithm of Adams and MacKay (2007). Maintains a posterior distri-
bution over the run length (time since last changepoint) and updates it online as new observations

arrive.
Usage
bocpd(
data,
type = "both",
prior = NULL,

hazard = NULL,
threshold = 0.3,
truncate_run_length = NULL,

)

Arguments
data Numeric vector or matrix
type Type of change to detect (currently supports "both")
prior Prior specification (from normal_gamma(), normal_known_var(), etc.)
hazard Hazard prior (from geometric_hazard(), etc.) or numeric hazard rate
threshold Probability threshold for declaring a changepoint

truncate_run_length
Maximum run length to track (for efficiency)

Additional arguments

8 compare_methods

Value
List containing:
* changepoints: Detected changepoint locations
* posterior: Matrix of run length posteriors over time

» prob_change: Probability of changepoint at each time

* map_run_length: Maximum a posteriori run length at each time

References

Adams, R. P. and MacKay, D. J. C. (2007). Bayesian Online Changepoint Detection. arXiv:0710.3742

Examples

data <- c(rnorm(10@, mean = @), rnorm(100, mean = 3))
result <- bocpd(data)
result <- bocpd(data, prior = normal_gamma(mu@ = @, kappa® = 1

alpha® = 1, betad® = 1))

result <- bocpd(data, hazard = 0.01)

compare_methods Compare Multiple Detection Methods

Description

Runs multiple detection methods on the same data and compares results.

Usage

compare_methods(
data,
methods = c("pelt”, "binseg"”,
true_changepoints = NULL,
tolerance = 5,

n

wbs"”, "bocpd"),

constant_hazard 9

Arguments
data Numeric vector or matrix
methods Character vector of method names

true_changepoints
Vector of true changepoints (for evaluation)

tolerance Tolerance for evaluation metrics

Additional arguments passed to detect_regimes

Value

Object of class "regime_comparison"

Examples

true_cp <- c(50, 100)
data <- c(rnorm(50), rnorm(50, mean = 2), rnorm(50))

comparison <- compare_methods(
data,
methods = c("pelt”, "binseg"),
true_changepoints = true_cp

)

constant_hazard Constant Hazard Prior (Alias for Geometric)

Description

Constant Hazard Prior (Alias for Geometric)

Usage

constant_hazard(lambda = 0.01)

Arguments
lambda Hazard rate (probability of changepoint at each step). Should be between 0 and
1. Smaller values expect fewer changepoints.
Value

An object of class "hazard_prior"

10

cpc_detect

covering_metric Covering Metric

Description

Measures how well detected segments cover true segments using IoU.

Usage

covering_metric(detected, true_cp, n)

Arguments
detected Vector of detected changepoint locations
true_cp Vector of true changepoint locations
n Total number of observations

Value

Covering metric (0 to 1)

cpc_detect Contrastive Predictive Coding for Changepoint Detection

Description

Uses self-supervised contrastive learning to detect changepoints by identifying where the learned

representations change significantly.

Usage

cpc_detect(
data,
window_size = 64,
encoding_dim = 32,
n_negative = 10,
prediction_steps = 5,
epochs = 100,
threshold = NULL,
verbose = FALSE

crops_detect 11

Arguments
data Numeric vector
window_size Window size (default: 64)

encoding_dim Encoding dimension (default: 32)
n_negative Number of negative samples (default: 10)
prediction_steps

Future steps to predict (default: 5)

epochs Training epochs (default: 100)
threshold Detection threshold for representation distance
verbose Show progress

Value

List with changepoints and learned encodings

References

Oord, A. v. d., Li, Y., and Vinyals, O. (2018). Representation Learning with Contrastive Predictive
Coding

crops_detect CROPS - Changepoints for a Range of Penalties

Description

Efficiently computes optimal segmentations for a range of penalty values, useful for model selec-
tion.

Usage

crops_detect(
data,
penalty_range = c(0.1, 100),
method = "pelt”,
min_segment = 2

Arguments

data Numeric vector
penalty_range Vector of length 2: c(min_penalty, max_penalty)
method Segmentation method ("pelt" or "fpop")

min_segment Minimum segment length

12

Value
List with:
penalties
n_changepoints

changepoints

costs

References

cusum

Penalty values tested
Number of changepoints for each penalty
List of changepoint vectors

Optimal costs

Haynes, K., Eckley, 1. A., and Fearnhead, P. (2017). Computationally efficient changepoint detec-
tion for a range of penalties. Journal of Computational and Graphical Statistics, 26(1), 134-143.

cusum

CUSUM Changepoint Detection

Description

Detects changepoints using the Cumulative Sum (CUSUM) statistic. Foundational method for de-
tecting changes in mean.

Usage
cusum(
data,
type = "mean”,
threshold = 4,
mode = "offline”,
mu@ = NULL,
sigma = NULL,
)
Arguments
data Numeric vector
type Type of change ("mean", "variance", "both")
threshold Detection threshold (alarm when statistic exceeds this)
mode "offline" for retrospective or "online" for sequential
mu@ Target mean under null hypothesis (for online mode)
sigma Known standard deviation (if NULL, estimated from data)

Additional arguments

detect_pelt 13

Value

List with changepoints and statistics

Examples

data <- c(rnorm(50), rnorm(50, mean = 2))
result <- cusum(data)

detect_pelt Detect changepoints using enhanced PELT algorithm

Description

Pruned Exact Linear Time (PELT) algorithm for optimal changepoint detection with enhancements
for autocorrelated data and numerical stability.

Usage
detect_pelt(
data,
type = "both”,

penalty = "MBIC",
min_segment = 2,
robust = FALSE,
correct_ar = FALSE,
merge_close = NULL,

)
Arguments
data Numeric vector or matrix. For matrices, rows are observations.
type Type of change to detect: "mean”, "var", or "both".
penalty Penalty type ("MBIC", "BIC", "AIC") or numeric value.
min_segment Minimum segment length (default: 2).
robust Logical or character. FALSE for standard, TRUE for moderate robustness, or
one of "mild", "moderate", "aggressive", "auto" for specific levels.
correct_ar Logical. Apply pre-whitening for autocorrelated data. Default: FALSE.

merge_close Integer or NULL. Merge changepoints within this distance. Default: NULL.

Additional arguments (currently unused).

14 detect_pelt

Details

This implementation includes enhancements over standard PELT:

Pre-whitening for autocorrelated data: When correct_ar = TRUE, the function estimates the
AR(1) coefficient and transforms the data via y; = y; — py:—1 before applying PELT.

Configurable robustness: The robust parameter accepts:

* FALSE: Standard MLE-based estimation
* TRUE or "moderate”: 10\

e "mild": 5\

e "aggressive”: 15\

e "auto": Automatically select based on data characteristics

Value

A list with components:

changepoints Integer vector of detected changepoint locations
n_changepoints Number of changepoints detected

cost Final cost value

ar_coefficient Estimated AR(1) coefficient (if correct_ar = TRUE)
prewhitened Logical indicating if pre-whitening was applied
robust Logical indicating if robust estimation was used
robust_level Character indicating robustness level used

information_criterion Reserved for future use

References

Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal detection of changepoints with a linear
computational cost. JASA, 107(500), 1590-1598.

Examples

data <- c(rnorm(100, @), rnorm(100, 3))
result <- detect_pelt(data, type = "mean”)

data_contaminated <- c(rnorm(10@, @), rnorm(100, 3))
data_contaminated[sample (200, 10)] <- rnorm(10, @, 10)
result_robust <- detect_pelt(data_contaminated, robust = TRUE)

result_auto <- detect_pelt(data_contaminated, robust = "auto")

detect_regimes 15

detect_regimes Detect Regime Changes in Time Series

Description

Main function for detecting regime changes (changepoints) in time series data. Supports multiple
detection methods, both frequentist and Bayesian, and can operate in offline (retrospective) or online
(sequential) modes.

Usage
detect_regimes(
data,
method = c("pelt”, "bocpd”, "cusum”, "binseg", "wbs", "shiryaev"”, "ensemble"),
type = c("both”, "mean”, "variance", "trend”, "distribution"),
mode = c("offline”, "online"),
n_changepoints = "multiple”,
penalty = "BIC",
min_segment = 2,
prior = NULL,
hazard = NULL,
threshold = NULL,
uncertainty = TRUE,
bootstrap_reps = 200,
)
Arguments
data Numeric vector, time series (ts object), or matrix for multivariate data. For
matrices, rows are observations and columns are variables.
method Detection method. One of:
e "pelt"”: Pruned Exact Linear Time (default for offline)
* "bocpd”: Bayesian Online Changepoint Detection
e "cusum”: Cumulative Sum
* "binseg"”: Binary Segmentation
e "wbs"”: Wild Binary Segmentation
e "shiryaev": Shiryaev-Roberts procedure
* "ensemble”: Combination of multiple methods
type Type of change to detect:

e "mean”: Changes in mean only

e "variance": Changes in variance only

* "pboth": Changes in mean and/or variance (default)
* "trend”: Changes in linear trend

16

mode

n_changepoints

penalty

min_segment
prior
hazard
threshold
uncertainty

bootstrap_reps

Value

* "distribution”: Non-parametric distributional changes
Operation mode:

» "offline": Retrospective analysis with full data (default)

* "online": Sequential analysis for monitoring
Expected number of changepoints:

e "single": Detect at most one changepoint
* "multiple”: Detect multiple changepoints (default)

* An integer: Detect exactly this many changepoints
Penalty for model complexity (offline methods):

e "BIC": Bayesian Information Criterion (default)
e "AIC": Akaike Information Criterion

e "MBIC": Modified BIC

e "MDL": Minimum Description Length

* A number: Manual penalty value
Minimum segment length (number of observations)
Prior specification for Bayesian methods (from prior functions)
Hazard prior for changepoint occurrence (Bayesian methods)
Detection threshold (for online/CUSUM methods)

Logical; if TRUE, compute confidence intervals

detect_regimes

Number of bootstrap replicates for uncertainty (if uncertainty = TRUE)

Additional arguments passed to specific methods

An object of class "regime_result” containing:

* changepoints: Vector of detected changepoint locations

* n_changepoints: Number of changepoints detected

* segments: List of segment information (start, end, parameters)

* confidence_intervals: Confidence intervals for changepoint locations

* existence_probability: Probability that each changepoint exists

* posterior: Posterior distribution (Bayesian methods)

e information_criterion: BIC/AIC values

¢ method: Method used

e call: The function call

economic_cycles 17
Examples

set.seed(123)
data <- c(rnorm(100, mean = @), rnorm(100, mean = 3))

result <- detect_regimes(data)

print(result)
plot(result)
result <- detect_regimes(data, method = "bocpd”,
prior = normal_gamma())
result <- detect_regimes(data, method = "cusum”,
mode = "online"”, threshold = 5)
economic_cycles Economic Cycles Dataset
Description

A simulated time series representing an economic indicator with regime changes corresponding to
expansion, recession, recovery, and stable growth periods.
Usage

economic_cycles

Format
A time series object of length 500 with attributes:
true_changepoints Vector of true changepoint locations: ¢(120, 250, 380)

description Description of the dataset

regimes Names of the regimes: Expansion, Recession, Recovery, Stable Growth

Details
The data simulates monthly economic data from 2000-2041 with four distinct regimes:
* Regime 1 (1-120): Expansion - positive trend, low volatility
* Regime 2 (121-250): Recession - negative trend, high volatility
* Regime 3 (251-380): Recovery - positive trend, medium volatility
* Regime 4 (381-500): Stable Growth - low trend, low volatility

18 edivisive_detect

Source

Simulated data for package examples

Examples

data(economic_cycles)
result <- detect_regimes(economic_cycles, method = "pelt"”)
plot(result)

Compare with true changepoints
true_cps <- attr(economic_cycles, "true_changepoints”)
evaluate(result, true_changepoints = true_cps)

edivisive_detect E-Divisive Changepoint Detection

Description
Nonparametric changepoint detection using energy statistics. Can detect changes in any aspect of
the distribution.

Usage

edivisive_detect(data, min_segment = 5, alpha = 0.05, n_perm = 199)

Arguments
data Numeric vector or matrix
min_segment Minimum segment length
alpha Significance level for permutation tests
n_perm Number of permutations

Value

List with changepoints and test statistics

References

Matteson, D. S., and James, N. A. (2014). A nonparametric approach for multiple change point
analysis of multivariate data. Journal of the American Statistical Association, 109(505), 334-345.

ensemble_dI_detect 19

ensemble_dl_detect Ensemble Deep Learning Detection

Description

Combines multiple deep learning methods for robust detection.

Usage
ensemble_dl_detect(
data,
methods = c("autoencoder”, "tcn", "transformer"),

min_agreement = 2,

)
Arguments
data Numeric vector
methods Vector of methods to use (default: all)

min_agreement Minimum number of methods that must agree

Additional arguments passed to individual methods

Value

List with consensus changepoints and individual results

evaluate Evaluate Changepoint Detection Results

Description

Comprehensive evaluation of detection results against known ground truth. Computes multiple
metrics for localization, segmentation, and detection.

Usage

evaluate(result, true_changepoints, n = NULL, tolerance = 5)

Arguments

result A regime_result object or vector of changepoint locations
true_changepoints

Vector of true changepoint locations
n Total number of observations (required if result is a vector)

tolerance Tolerance window for matching changepoints (for F1 score)

20 fl_score

Value

A list of class "regime_evaluation" containing all metrics

Examples

true_cp <- c(50, 100)
data <- c(rnorm(50), rnorm(50, mean = 2), rnorm(50))

result <- detect_regimes(data)
evaluation <- evaluate(result, true_cp)
print(evaluation)

evaluation Evaluation Metrics for Changepoint Detection

Description

Functions for evaluating changepoint detection results against ground truth. Includes metrics for
localization accuracy, segmentation quality, and detection performance.

f1_score F1 Score with Tolerance

Description

Harmonic mean of precision and recall.

Usage

f1_score(detected, true_cp, tolerance = 5)

Arguments
detected Vector of detected changepoint locations
true_cp Vector of true changepoint locations
tolerance Maximum distance for a match

Value

F1 score (O to 1)

Examples

f1_score(c(48, 102, 150), c(50, 100), tolerance = 5)

fpop_detect 21

fpop_detect FPOP - Functional Pruning Optimal Partitioning

Description
More efficient than PELT for certain data types by maintaining piecewise quadratic cost functions
instead of just minimum values. Achieves O(n) complexity in practice.

Usage

fpop_detect(data, penalty = "bic", min_segment = 2, cost_type = "mean")

Arguments
data Numeric vector of observations
penalty Penalty for adding a changepoint. Can be:
e "bic": log(n)
e "aic": 2
* "mbic": 3*log(n)
* numeric: Custom penalty value
min_segment Minimum segment length (default: 2)
cost_type Type of cost function:
* "mean”: Gaussian mean change (default)
* "meanvar”: Gaussian mean and variance change
* "poisson”: Poisson rate change
Value
List with:

changepoints Vector of changepoint locations
cost Final optimal cost

n_candidates Average candidates per time point (efficiency metric)

References

Maidstone, R., Hocking, T., Rigaill, G., and Fearnhead, P. (2017). On optimal multiple changepoint
algorithms for large data. Statistics and Computing, 27(2), 519-533.

Examples

data <- c(rnorm(100, @), rnorm(100, 3), rnorm(100, 1))
result <- fpop_detect(data, penalty = "bic")
print(result$changepoints)

22 hausdorff_distance

geometric_hazard Geometric Hazard Prior

Description
Creates a geometric (constant hazard) prior for the changepoint process. This implies that the
probability of a changepoint at each time step is constant and independent.

Usage

geometric_hazard(lambda = 0.01)

Arguments
lambda Hazard rate (probability of changepoint at each step). Should be between 0 and
1. Smaller values expect fewer changepoints.
Details

Under a geometric hazard, the expected run length (time between changepoints) is 1/lambda. For
example, lambda = 0.01 expects a changepoint every 100 observations on average.

Value

An object of class "hazard_prior"

Examples

hazard <- geometric_hazard(lambda = 0.01)

hazard <- geometric_hazard(lambda = 0.1)

hausdorff_distance Hausdorff Distance Between Changepoint Sets

Description

Computes the Hausdorff distance between detected and true changepoints. The Hausdorff distance
is the maximum distance from a point in one set to the nearest point in the other set.

Usage

hausdorff_distance(detected, true_cp)

industrial_sensor 23

Arguments
detected Vector of detected changepoint locations
true_cp Vector of true changepoint locations
Value

Hausdorff distance (non-negative number)

Examples

hausdorff_distance(c(48, 102), c(50, 100))

industrial_sensor Industrial Sensor Dataset

Description
A simulated time series from a manufacturing process with abrupt changes representing process
shifts and equipment states.

Usage

industrial_sensor

Format
A time series object of length 600 with attributes:

true_changepoints Vector of true changepoint locations: ¢(150, 300, 450)
description Description of the dataset

regimes Names of the regimes: Normal, Drift, Malfunction, Corrected

Details
The data simulates per-minute sensor measurements with four distinct regimes:

e Regime 1 (1-150): Normal operation - mean=>50, sd=2

* Regime 2 (151-300): Process drift - mean=55, sd=2.5

* Regime 3 (301-450): Equipment malfunction - mean=45, sd=5
* Regime 4 (451-600): Corrected operation - mean=50, sd=1.5

The data includes autocorrelation typical of industrial processes.

Source

Simulated data for package examples

24 init_julia
Examples
data(industrial_sensor)

result <- detect_regimes(industrial_sensor, method = "bocpd")
plot(result, type = "segments")

init_julia Initialize Julia Backend

Description

Explicitly initialize the Julia backend for improved performance. This loads the RegimeChangeJulia
module and makes Julia functions available.

Usage

init_julia(force = FALSE, num_threads = NULL)

Arguments

force Logical. Force reinitialization even if already initialized. Default is FALSE.

num_threads Integer or NULL. Number of Julia threads to use. Default is NULL (auto-
detect).

Value

Logical indicating success (invisibly).

Examples
Not run:
init_julia()
julia_available()
result <- detect_regimes(data, method = "pelt"”)

End(Not run)

inverse_gamma_var 25

inverse_gamma_var Inverse-Gamma Prior for Variance Only

Description

Creates an Inverse-Gamma prior for detecting changes in variance with known mean.

Usage

inverse_gamma_var(alpha® = 1, beta® = 1, known_mean = 0)

Arguments

alpha@ Shape parameter

beta@ Scale parameter

known_mean Known mean of the observations
Value

An object of class "regime_prior"

julia_available Check if Julia Backend is Available

Description

Check if Julia Backend is Available

Usage

julia_available()

Value

Logical indicating if Julia is available and initialized.

26

kernel_cpd_detect

julia_status

Get Julia Backend Status

Description

Get Julia Backend Status

Usage

julia_status()

Value

List with Julia status information.

kernel_cpd_detect Kernel-based Changepoint Detection

Description

Detects changepoints using Maximum Mean Discrepancy (MMD) in a Reproducing Kernel Hilbert
Space. This nonparametric approach can detect changes in any aspect of the distribution.

Usage

kernel_cpd_detect(

data,

penalty = "bic”,
kernel = "rbf",
bandwidth = 0,

min_segment

Arguments

data
penalty

kernel

bandwidth

min_segment

5

Numeric vector or matrix (rows = observations)
Penalty for changepoints (default: "bic")
Kernel function to use:

e "rbf": Radial Basis Function (Gaussian) kernel
e "linear": Linear kernel
* "poly": Polynomial kernel
* "laplacian”: Laplacian kernel
Kernel bandwidth (0 = automatic median heuristic)

Minimum segment length

mean_absolute_error 27

Value

List with changepoints and kernel statistics

References

Arlot, S., Celisse, A., and Harchaoui, Z. (2019). A kernel multiple change-point algorithm via
model selection. Journal of Machine Learning Research, 20(162), 1-56.

mean_absolute_error Mean Absolute Error for Changepoints

Description
Computes mean absolute error between matched changepoints. Unmatched changepoints are ig-
nored.

Usage

mean_absolute_error(detected, true_cp)

Arguments
detected Vector of detected changepoint locations
true_cp Vector of true changepoint locations
Value

Mean absolute error

negbin_hazard Negative Binomial Hazard Prior

Description
Creates a negative binomial hazard prior, which allows for more flexibility in the distribution of run
lengths.

Usage
negbin_hazard(r = 1, p = 0.01)

Arguments

r Number of successes (shape parameter)

p Probability of success

28 normal_gamma

Value

An object of class "hazard_prior"

normal_gamma Normal-Gamma Prior for Unknown Mean and Variance

Description
Creates a Normal-Gamma prior specification for data with unknown mean and variance. This is
conjugate for normal observations.

Usage

normal_gamma(mu@ = @, kappa@® = 1, alpha® = 1, betad = 1)

Arguments
mu@ Prior mean for the mean parameter
kappa0 Prior pseudo-observations for the mean (strength of prior)
alpha@ Shape parameter for the precision (inverse variance)
beta@ Rate parameter for the precision

Details

The Normal-Gamma prior places a joint distribution on (mu, tau) where tau = 1/sigma”2:
tau ~ Gamma(alpha0, beta0) mu | tau ~ Normal(mu0, 1/(kappa0 * tau))

The prior mean of mu is mu0, and the prior mean of sigma”?2 is beta0O/(alpha0-1) for alphaO > 1.

Value

An object of class "regime_prior"

Examples

prior <- normal_gamma()

prior <- normal_gamma(mu@ = @, kappa@ = 10, alpha@ = 3, betad = 2)

normal_known_var 29

normal_known_var Normal Prior for Unknown Mean with Known Variance

Description

Creates a Normal prior specification for data with unknown mean but known variance.

Usage

normal_known_var(mu@ = @, sigma@ = 1, known_var = 1)

Arguments
mu@ Prior mean
sigmad Prior standard deviation for the mean
known_var Known variance of the observations
Value

An object of class "regime_prior"

Examples

prior <- normal_known_var(mu@ = @, sigma@ = 1, known_var = 1)

normal_wishart Normal-Wishart Prior for Multivariate Data

Description
Creates a Normal-Wishart prior for multivariate normal data with unknown mean vector and covari-
ance matrix.

Usage

normal_wishart(mu@, kappa® = 1, nu@ = NULL, Psi@ = NULL)

Arguments
mu@ Prior mean vector (d-dimensional)
kappa@ Prior pseudo-observations for the mean
nuo Degrees of freedom for the Wishart (must be >= d)

Psi@ Scale matrix for the Wishart (d x d positive definite)

30 not_detect

Value

An object of class "regime_prior"

Examples

prior <- normal_wishart(
mud = c(0, 9),
kappa@ = 1,
nud = 3,
Psi@ = diag(2)

not_detect NOT - Narrowest-Over-Threshold Changepoint Detection

Description

Detects changepoints by finding the narrowest intervals that contain significant changes, providing
excellent localization.

Usage

not_detect(
data,
threshold = NULL,
min_segment = 5,

contrast_type = "pcwsConst”
)
Arguments
data Numeric vector
threshold Detection threshold (NULL for automatic)
min_segment Minimum segment length

contrast_type Type of contrast function

Value

List with changepoints and interval information

References

Baranowski, R., Chen, Y., and Fryzlewicz, P. (2019). Narrowest-over- threshold detection of multi-
ple change points and change-point-like features. Journal of the Royal Statistical Society Series B,
81(3), 649-672.

pelt 31

pelt Detect changepoints using PELT algorithm

Description

Wrapper for detect_pelt for compatibility.

Usage

pelt(
data,
type = "both",
penalty = "MBIC",
min_segment = 2,
robust = FALSE,
correct_ar = FALSE,
merge_close = NULL,

)
Arguments
data Numeric vector or matrix. For matrices, rows are observations.
type Type of change to detect: "mean”, "var", or "both".
penalty Penalty type ("MBIC", "BIC", "AIC") or numeric value.
min_segment Minimum segment length (default: 2).
robust Logical or character. FALSE for standard, TRUE for moderate robustness, or
one of "mild", "moderate", "aggressive", "auto" for specific levels.
correct_ar Logical. Apply pre-whitening for autocorrelated data. Default: FALSE.

merge_close Integer or NULL. Merge changepoints within this distance. Default: NULL.

Additional arguments (currently unused).

Value

List with changepoints and diagnostics

See Also

detect_pelt

32 plot.regime_result

plot.regime_result Plot Regime Change Detection Results

Description

Create visualizations of changepoint detection results.

Usage
S3 method for class 'regime_result'
plot(
X’
type = c("data"”, "segments"”, "posterior”, "diagnostic”, "runlength"),

show_ci = TRUE,
show_segments = TRUE,

title = NULL,
)
Arguments

X A regime_result object

type Type of plot:
* "data": Data with changepoints marked (default)
* "segments”: Data colored by segment
* "posterior”: Posterior probability of change (Bayesian methods)
* "diagnostic”: Diagnostic statistics
* "runlength”: Run length distribution (BOCPD)

show_ci Show confidence intervals if available

show_segments Color segments differently
title Plot title
Additional arguments passed to ggplot

Value

A ggplot2 object

Examples

data <- c(rnorm(100), rnorm(100, mean = 2))
result <- detect_regimes(data)

plot(result)

plot(result, type = "segments")

plot_compare

33

plot_compare Plot Multiple Results for Comparison

Description

Creates a faceted plot comparing results from different methods.

Usage
plot_compare(..., names = NULL)
Arguments
Multiple regime_result objects
names Names for each result
Value
A ggplot object
plot_interactive Create Interactive Plot
Description

Creates an interactive version of the changepoint plot using plotly.

Usage
plot_interactive(result, ...)
Arguments
result A regime_result object
Additional arguments
Value

A plotly object

34

poisson_gamma

plot_summary Create Multi-Panel Summary Plot

Description

Creates a comprehensive multi-panel visualization of detection results.

Usage
plot_summary(result, ...)
Arguments
result A regime_result object
Additional arguments
Value

A combined ggplot object

poisson_gamma Gamma-Poisson Prior for Count Data

Description

Creates a Gamma prior specification for Poisson-distributed count data.

Usage

poisson_gamma(alpha® = 1, betad = 1)

Arguments
alphao Shape parameter for the rate
beta® Rate parameter

Value

An object of class "regime_prior"

Examples

prior <- poisson_gamma(alpha® = 1, beta@ = 1)

precision_score 35

precision_score Precision Score with Tolerance

Description

Proportion of detected changepoints that are within tolerance of a true one.

Usage

precision_score(detected, true_cp, tolerance = 5)

Arguments
detected Vector of detected changepoint locations
true_cp Vector of true changepoint locations
tolerance Maximum distance for a match

Value

Precision (0 to 1)

rand_index Rand Index for Segmentation

Description
Measures agreement between detected and true segmentations. Based on pairwise comparisons of
whether points are in the same segment.

Usage

rand_index(detected, true_cp, n)

Arguments
detected Vector of detected changepoint locations
true_cp Vector of true changepoint locations
n Total number of observations

Value

Rand Index (O to 1)

36

regime_detector

recall_score Recall Score with Tolerance

Description

Proportion of true changepoints that are matched by a detection.

Usage

recall_score(detected, true_cp, tolerance = 5)

Arguments
detected Vector of detected changepoint locations
true_cp Vector of true changepoint locations
tolerance Maximum distance for a match

Value

Recall (Oto 1)

regime_detector Create Online Regime Detector

Description

Creates a detector object for online (sequential) changepoint detection. The detector maintains state

and can be updated incrementally as new observations arrive.

Usage
regime_detector(
method = c("bocpd”, "cusum”, "shiryaev"),
prior = NULL,

hazard = NULL,
threshold = NULL,

)

Arguments
method Detection method: "bocpd”, "cusum", or "shiryaev"
prior Prior specification for Bayesian methods
hazard Hazard prior for changepoint occurrence
threshold Detection threshold (probability or statistic value)

Additional method-specific parameters

reset

Value

An object of class "regime_detector”

Examples

detector <- regime_detector(method = "bocpd”,
prior = normal_gamma(),
threshold = 9.5)

for (x in rnorm(100)) {
detector <- update(detector, x)
if (detector$last_result$alarm) {

37

message("Change detected at observation ", detector$last_result$t)
detector <- reset(detector)
}
3
reset Reset a detector to its initial state
Description

Reset a detector to its initial state

Usage

reset(object, ...)

S3 method for class 'regime_detector'

reset(object, ...)
Arguments
object A detector object (e.g., from BOCPD or Shiryaev-Roberts)

Additional arguments

Value

The reset detector object

Methods (by class)

* reset(regime_detector): Reset method for regime_detector

38 shiryaev_roberts
rmse_changepoints RMSE for Changepoints
Description
RMSE for Changepoints
Usage
rmse_changepoints(detected, true_cp)
Arguments
detected Vector of detected changepoint locations
true_cp Vector of true changepoint locations
Value
Root mean squared error
shiryaev_roberts Shiryaev-Roberts Changepoint Detection
Description
Implements the Shiryaev-Roberts procedure, which is asymptotically optimal for detecting changes
with minimal detection delay.
Usage
shiryaev_roberts(
data,
type = "mean”,
prior = NULL,

hazard = NULL,
threshold = 100,

mu@ = NULL,
mul = NULL,
sigma = NULL,

simulated_changepoints 39

Arguments
data Numeric vector
type Type of change to detect
prior Prior specification
hazard Hazard prior
threshold Detection threshold
mu@ Pre-change mean (if known)
mul Post-change mean (if known)
sigma Known standard deviation (if applicable)

Additional arguments
Value

List with changepoints and statistics

References

Shiryaev, A. N. (1963). On Optimum Methods in Quickest Detection Problems. Theory of Proba-
bility and Its Applications.

Examples

data <- c(rnorm(100), rnorm(100, mean = 1))
result <- shiryaev_roberts(data)

simulated_changepoints
Simulated Changepoints Benchmark Dataset

Description

A collection of simulated datasets with known changepoints for benchmarking changepoint detec-
tion methods.

Usage

simulated_changepoints

40

Format

A list with multiple scenarios:

single_mean Single mean change from O to 3

single_variance Single variance change from 1 to 9

multiple_mean Three mean changes

gradual Gradual trend change (challenging)

small_change Small mean change of 0.5 SD (challenging)
close_changepoints Three closely spaced changepoints (challenging)
heavy_tailed Mean change with t-distributed noise

multivariate Bivariate mean and covariance change
Each scenario contains:

* data: The time series data
* true_changepoints: Vector of true changepoint locations
* type: Type of change (mean, variance, etc.)

e description: Description of the scenario

Source

Simulated data for package benchmarking

Examples

data(simulated_changepoints)

Run benchmark on single mean scenario

scenario <- simulated_changepoints$single_mean

result <- detect_regimes(scenario$data, method = "pelt")
evaluate(result, true_changepoints = scenario$true_changepoints)

Compare multiple methods

comparison <- compare_methods(
data = scenario$data,
methods = c("pelt”, "bocpd”, "binseg"),
true_changepoints = scenario$true_changepoints

)

print(comparison)

simulated_changepoints

sparse_projection_cpd 41

sparse_projection_cpd Sparse Projection Changepoint Detection

Description

Detects changepoints in high-dimensional data using random sparse projections to reduce dimen-
sionality while preserving changepoint structure.

Usage

sparse_projection_cpd(
data,
n_projections = 10,
penalty = "bic",
min_segment = 5,
sparsity = 0.3

Arguments

data Matrix with rows = observations, columns = dimensions

n_projections Number of random projections (default: 10)

penalty Penalty for changepoints

min_segment Minimum segment length

sparsity Sparsity level for projections (fraction of non-zeros)
Value

List with changepoints and projection information

References

Wang, D. and Bhattacharjee, M. (2021). High-dimensional changepoint estimation via sparse pro-
jection. arXiv preprint.

tcn_detect TCN-based Changepoint Detection

Description

Uses Temporal Convolutional Networks with dilated causal convolutions for sequence-to-sequence
changepoint prediction.

42 tcn_detect

Usage

tcn_detect(
data,
true_changepoints = NULL,
window_size = 64,

n_filters = 64,
kernel_size = 3,
dilations = c(1, 2, 4, 8, 16),
dropout = 0.2,
epochs = 50,
threshold = 0.5,
verbose = FALSE

)

Arguments
data Numeric vector of time series data

true_changepoints
Optional vector of known changepoints for supervised training. If NULL, uses
unsupervised approach.

window_size Size of input window (default: 64)

n_filters Number of convolutional filters (default: 64)

kernel_size Kernel size for convolutions (default: 3)

dilations Dilation rates (default: c(1, 2, 4, 8, 16))

dropout Dropout rate (default: 0.2)

epochs Training epochs (default: 50)

threshold Detection threshold (default: 0.5)

verbose Show training progress (default: FALSE)
Value

List with changepoints, probabilities, and model

References

Bai, S., Kolter, J. Z., and Koltun, V. (2018). An Empirical Evaluation of Generic Convolutional and
Recurrent Networks for Sequence Modeling

transformer_detect 43

transformer_detect Transformer-based Changepoint Detection

Description

Implements a transformer architecture inspired by TCDformer for time series changepoint detection
using self-attention mechanisms.

Usage

transformer_detect(
data,
true_changepoints = NULL,
window_size = 128,

d_model = 64,
n_heads = 4,
n_layers = 2,
d_ff = 256,
dropout = 0.1,
epochs = 50,

threshold = 0.5,
verbose = FALSE

Arguments

data Numeric vector of time series data
true_changepoints
Optional vector of known changepoints

window_size Input window size (default: 128)
d_model Model dimension (default: 64)
n_heads Number of attention heads (default: 4)
n_layers Number of transformer layers (default: 2)
d_ff Feed-forward dimension (default: 256)
dropout Dropout rate (default: 0.1)
epochs Training epochs (default: 50)
threshold Detection threshold (default: 0.5)
verbose Show progress (default: FALSE)

Value

List with changepoints, attention weights, and model

44 well_log

References

Wu, H., et al. (2023). TimesNet: Temporal 2D-Variation Modeling

Zhou, H., et al. (2021). Informer: Efficient Transformer for Long Sequence Time-Series Forecast-
ing

update.regime_detector
Update Online Detector with New Observation

Description

Update Online Detector with New Observation

Usage
S3 method for class 'regime_detector’
update(object, x, ...)
Arguments
object A regime_detector object
X New observation (scalar or vector for multivariate)

Additional arguments

Value

The updated regime_detector object with results in $last_result

well_log Well Log Dataset

Description

A simulated well-log porosity dataset with abrupt lithology changes typical of geological forma-
tions.

Usage
well_log

wild_binary_segmentation 45

Format

A numeric vector of length 1000 with attributes:

true_changepoints Vector of true changepoint locations: ¢(200, 350, 500, 700, 850)
description Description of the dataset

lithologies Names of lithology units

Details

The data simulates porosity measurements from a well log with six distinct lithological units:

* Unit 1 (1-200): Sandstone - porosity ~15%
Unit 2 (201-350): Shale - porosity ~8%

Unit 3 (351-500): Limestone - porosity ~20%
Unit 4 (501-700): Sandstone - porosity ~12%
Unit 5 (701-850): Dense Shale - porosity ~5%
Unit 6 (851-1000): Sandstone - porosity ~18%

Source

Simulated data based on typical well-log characteristics

Examples

data(well_log)
result <- detect_regimes(well_log, method = "pelt”, min_segment = 50)
plot(result, type = "segments")

Compare with true lithology boundaries
true_cps <- attr(well_log, "true_changepoints"”)
evaluate(result, true_changepoints = true_cps)

wild_binary_segmentation
Wild Binary Segmentation

Description

Detects multiple changepoints using the Wild Binary Segmentation algorithm. Uses random inter-
vals to improve detection in long time series.

46 wild_binary_segmentation

Usage
wild_binary_segmentation(
data,
type = "both",

penalty = "BIC",
min_segment = 2,
n_changepoints = "multiple”,
M = 5000,

threshold = NULL,

)
Arguments
data Numeric vector or matrix of time series data
type Type of change to detect: "mean", "variance", or "both"
penalty Penalty for model complexity: "BIC", "AIC", "MBIC", or numeric
min_segment Minimum segment length

n_changepoints Expected number of changepoints: "single", "multiple", or integer
M Number of random intervals to draw
threshold Detection threshold for CUSUM statistic. If NULL, automatically determined

Additional arguments

Value
A list with:

changepoints Vector of detected changepoint locations

n_changepoints Number of changepoints detected
information_criterion
BIC value for the segmentation

References
Fryzlewicz, P. (2014). Wild Binary Segmentation for multiple change-point detection. Annals of
Statistics, 42(6), 2243-2281.

Examples

data <- c(rnorm(100), rnorm(100, mean = 2), rnorm(100))
result <- wild_binary_segmentation(data)

Index

* datasets julia_status, 26
economic_cycles, 17
industrial_sensor, 23 kernel_cpd_detect, 26
simulated_changepoints, 39
well_log, 44 mean_absolute_error, 27

negbin_hazard, 27
normal_gamma, 28
normal_known_var, 29
normal_wishart, 29
not_detect, 30

adjusted_rand_index, 4
autoencoder_detect, 4

benchmark_backends, 5
binary_segmentation, 6

bocpd, 7 pelt, 31

plot.regime_result, 32
plot_compare, 33
plot_interactive, 33
plot_summary, 34
poisson_gamma, 34
precision_score, 35

compare_methods, 8
constant_hazard, 9
covering_metric, 10
cpc_detect, 10
crops_detect, 11
cusum, 12

rand_index, 35

recall_score, 36

regime_detector, 36

economic_cycles, 17 RegimeChange (RegimeChange-package), 3
edivisive_detect, 18 RegimeChange-package, 3
ensemble_d1_detect, 19 reset, 37

evaluate, 19 rmse_changepoints, 38

evaluation, 20

detect_pelt, 13, 31
detect_regimes, 15

shiryaev_roberts, 38
£1 score. 20 simulated_changepoints, 39
fp;p det;ct 21 sparse_projection_cpd, 41

tcn_detect, 41

geometric_hazard, 22
transformer_detect, 43

h ff_di 22
ausdorff_distance, update.regime_detector, 44

industrial_sensor, 23
init_julia, 24
inverse_gamma_var, 25

well_log, 44
wild_binary_segmentation, 45

julia_available, 25

47

	RegimeChange-package
	adjusted_rand_index
	autoencoder_detect
	benchmark_backends
	binary_segmentation
	bocpd
	compare_methods
	constant_hazard
	covering_metric
	cpc_detect
	crops_detect
	cusum
	detect_pelt
	detect_regimes
	economic_cycles
	edivisive_detect
	ensemble_dl_detect
	evaluate
	evaluation
	f1_score
	fpop_detect
	geometric_hazard
	hausdorff_distance
	industrial_sensor
	init_julia
	inverse_gamma_var
	julia_available
	julia_status
	kernel_cpd_detect
	mean_absolute_error
	negbin_hazard
	normal_gamma
	normal_known_var
	normal_wishart
	not_detect
	pelt
	plot.regime_result
	plot_compare
	plot_interactive
	plot_summary
	poisson_gamma
	precision_score
	rand_index
	recall_score
	regime_detector
	reset
	rmse_changepoints
	shiryaev_roberts
	simulated_changepoints
	sparse_projection_cpd
	tcn_detect
	transformer_detect
	update.regime_detector
	well_log
	wild_binary_segmentation
	Index

