The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: Regression-Enhanced Random Forests
Version: 1.0.0
Description: A novel generalized Random Forest method, that can improve on RFs by borrowing the strength of penalized parametric regression. Based on Zhang et al. (2019) <doi:10.48550/arXiv.1904.10416>.
License: MIT + file LICENSE
BugReports: https://github.com/umbe1987/regenrf/issues
Imports: glmnet, randomForest
Suggests: testthat (≥ 3.0.0)
Config/testthat/edition: 3
Encoding: UTF-8
RoxygenNote: 7.3.3
URL: https://github.com/umbe1987/regenrf
NeedsCompilation: no
Packaged: 2025-12-17 13:12:29 UTC; minorum
Author: Umberto Minora ORCID iD [aut, cre, cph]
Maintainer: Umberto Minora <umbertofilippo@tiscali.it>
Repository: CRAN
Date/Publication: 2025-12-22 18:00:08 UTC

Regression-Enhanced Random Forests

Description

RegEnRF() implements Regression-Enhanced Random Forests algorithm (based on Zhang et al., 2019 paper) for regression.

Usage

RegEnRF(x, y, lambda, ...)

Arguments

x

A numeric matrix of predictors. Requirement: nvars >1; in other words, x should have 2 or more columns. This is a constraint of glmnet::glmnet().

y

A numeric response vector.

lambda

See 'lambda' argument in glmnet::glmnet().

...

other arguments passed to glmnet::glmnet() and randomForest::randomForest().

Details

This function is based on the packages randomForest::randomForest and glmnet::glmnet.

Value

An object with S3 class "RegEnRF"

Author(s)

Umberto Minora umbertofilippo@tiscali.it, based on the paper by Zhang et al. (2019).

References

Zhang, H., Nettleton, D., & Zhu, Z. (2019). Regression-enhanced random forests. arXiv preprint doi:10.48550/arXiv.1904.10416.

Examples

set.seed(111)
data(co2)
x <- matrix(c(time(co2), cycle(co2)), ncol = 2)
y <- as.numeric(co2)
mod <- RegEnRF(x, y, lambda = 0.1)
freq <- frequency(co2)
startt <- tsp(co2)[2] + 1 / freq
xnew.t <- seq(startt, by = 1 / freq, length.out = freq * 3)
xnew <- matrix(c(xnew.t, cycle(tail(co2, freq * 3))), ncol = 2)
pred <- predict(mod, xnew)
pred.ts <- ts(pred, start = startt, frequency = freq)
plot(ts.union(co2, pred.ts), plot.type = "single", col = c("black", "red"))

Prediction of test data using Regression-Enhanced Random Forests.

Description

Prediction of test data using Regression-Enhanced Random Forests.

Usage

## S3 method for class 'RegEnRF'
predict(object, newx, ...)

Arguments

object

an object of class "RegEnRF", as that created by the function RegEnRF

newx

matrix of new values for x at which predictions are to be made function will abort.

...

other arguments passed to glmnet::predict.glmnet and randomForest:::predict.randomForest.

Value

A vector of predicted values.

Examples

set.seed(111)
x <- matrix(rnorm(100 * 20), 100, 20)
y <- rnorm(100)
mod <- RegEnRF(x, y, lambda = 0.1)
predict(mod, newx = x)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.