The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: 'Rcpp' Implementation of Dirichlet Process Regression
Version: 0.1.10
Description: 'Rcpp' reimplementation of the the Bayesian non-parametric Dirichlet Process Regression model for penalized regression first published in Zeng and Zhou (2017) <doi:10.1038/s41467-017-00470-2>. A full Bayesian version is implemented with Gibbs sampling, as well as a faster but less accurate variational Bayes approximation.
License: GPL-3
Encoding: UTF-8
Imports: Rcpp (≥ 1.0.13)
LinkingTo: Rcpp, RcppArmadillo, RcppGSL
Suggests: testthat (≥ 3.0.0), snpStats
Config/testthat/edition: 3
RoxygenNote: 7.3.2
NeedsCompilation: yes
Packaged: 2025-03-19 04:02:14 UTC; moe
Author: Mohammad Abu Gazala [cre, aut], Daniel Nachun [ctb], Ping Zeng [ctb]
Maintainer: Mohammad Abu Gazala <abugazalamohammad@gmail.com>
Repository: CRAN
Date/Publication: 2025-03-19 15:00:08 UTC

Fit Dirichlet Process Regression model

Description

Fit a Dirichlet Process Regression model using a specified fitting method. Outcome (y) should be Gaussian and scaled and centered; predictors (x) and covariates (w) should also be scaled and centered but may be of any distribution

Usage

fit_model(
  y,
  w,
  x,
  rotate_variables = FALSE,
  covariance_matrix = NULL,
  fitting_method = "VB",
  ...
)

Arguments

y

Numeric vector of outcome

w

Numeric matrix of covariates (default = rep(1, length(y)))

x

Numeric matrix of predictors

rotate_variables

Logical value indicating whether to rotate y, w and x using covariance_matrix (default = FALSE)

covariance_matrix

Numeric sample covariance matrix used for rotation of y, w and x - if NULL and rotate_variables is TRUE then the sample covariance matrix is computed from x

fitting_method

Character string indicating the method used for fitting the data - possible values are:

  • 'Gibbs' - full Bayesian inference with Gibbs sampler with a fixed n_k

  • 'Adaptive_Gibbs' - adaptive version of Gibbs sample that automatically chooses n_k

  • 'VB' - variational Bayes inference with a fixed n_k

...

arguments to pass through to internal methods.

Details

fit_model() can pass a number of additional parameters to the different fitting methods. These parameters are used for all modes:

These parameters are only used for the Gibbs and Adaptive Gibbs modes:

Value

returns an object of class 'DPR_Model'

Examples

file_path_x <- system.file("extdata", "data/in/x.rds", package = "RcppDPR")
file_path_y <- system.file("extdata", "data/in/y.rds", package = "RcppDPR")
file_path_w <- system.file("extdata", "data/in/w.rds", package = "RcppDPR")
x = readRDS(file_path_x)
y = readRDS(file_path_y)
w = readRDS(file_path_w)
dpr_model <- fit_model(y, w, x, fitting_method = "VB")

Use a DPR model to predict results from new data

Description

Use a DPR model to predict results from new data

Usage

## S3 method for class 'DPR_Model'
predict(object, newdata, ...)

Arguments

object

an object of class DPR_Model

newdata

Numeric matrix representing the input to the model

...

ignored args.

Value

returns Numeric vector of predictions

Examples

n <- 500
p <- 10775
file_path_x <- system.file("extdata", "data/in/x.rds", package = "RcppDPR")
file_path_y <- system.file("extdata", "data/in/y.rds", package = "RcppDPR")
file_path_w <- system.file("extdata", "data/in/w.rds", package = "RcppDPR")
x = readRDS(file_path_x)
y = readRDS(file_path_y)
w = readRDS(file_path_w)
dpr_model <- fit_model(y, w, x, fitting_method = "VB")
new_x <- matrix(rnorm(n = n * p, mean = 0, sd = 1), nrow = n, ncol = p)
new_y <- predict(dpr_model, new_x)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.