The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
A collection of high performance functions and iterators implemented in C++ for solving problems in combinatorics and computational mathematics.
{combo|permute}General
: Generate all
combinations/permutations of a vector (including multisets) meeting
specific criteria.{partitions|compositions}General
:
Efficient algorithms for partitioning numbers under various
constraints{combo|permute|partitions|compositions}Sample
:
Generate reproducible random samples{combo|permute|partitions|compositions}Iter
:
Flexible iterators allow for bidirectional iteration as well as random
access.primeSieve
: Fast prime number
generatorprimeCount
: Prime counting function
using Legendre’s
formulaThe primeSieve
function and the primeCount
function are both based off of the excellent work by Kim Walisch. The respective
repos can be found here: kimwalisch/primesieve;
kimwalisch/primecount
Additionally, many of the sieving functions make use of the fast integer division library libdivide by ridiculousfish.
install.packages("RcppAlgos")
## install the development version
::install_github("jwood000/RcppAlgos") devtools
## Find all 3-tuples combinations of 1:4
comboGeneral(4, 3)
#> [,1] [,2] [,3]
#> [1,] 1 2 3
#> [2,] 1 2 4
#> [3,] 1 3 4
#> [4,] 2 3 4
## Alternatively, iterate over combinations
= comboIter(4, 3)
a @nextIter()
a#> [1] 1 2 3
@back()
a#> [1] 2 3 4
2]]
a[[#> [1] 1 2 4
## Pass any atomic type vector
permuteGeneral(letters, 3, upper = 4)
#> [,1] [,2] [,3]
#> [1,] "a" "b" "c"
#> [2,] "a" "b" "d"
#> [3,] "a" "b" "e"
#> [4,] "a" "b" "f"
## Flexible partitioning algorithms
partitionsGeneral(0:5, 3, freqs = rep(1:2, 3), target = 6)
#> [,1] [,2] [,3]
#> [1,] 0 1 5
#> [2,] 0 2 4
#> [3,] 0 3 3
#> [4,] 1 1 4
#> [5,] 1 2 3
## And compositions
compositionsGeneral(0:3, repetition = TRUE)
#> [,1] [,2] [,3]
#> [1,] 0 0 3
#> [2,] 0 1 2
#> [3,] 0 2 1
#> [4,] 1 1 1
## Generate a reproducible sample
comboSample(10, 8, TRUE, n = 5, seed = 84)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
#> [1,] 3 3 3 6 6 10 10 10
#> [2,] 1 3 3 4 4 7 9 10
#> [3,] 3 7 7 7 9 10 10 10
#> [4,] 3 3 3 9 10 10 10 10
#> [5,] 1 2 2 3 3 4 4 7
## Get combinations such that the product is between
## 3600 and 4000 (including 3600 but not 4000)
comboGeneral(5, 7, TRUE, constraintFun = "prod",
comparisonFun = c(">=","<"),
limitConstraints = c(3600, 4000),
keepResults = TRUE)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
#> [1,] 1 2 3 5 5 5 5 3750
#> [2,] 1 3 3 4 4 5 5 3600
#> [3,] 1 3 4 4 4 4 5 3840
#> [4,] 2 2 3 3 4 5 5 3600
#> [5,] 2 2 3 4 4 4 5 3840
#> [6,] 3 3 3 3 3 3 5 3645
#> [7,] 3 3 3 3 3 4 4 3888
## We can even iterate over constrained cases. These are
## great when we don't know how many results there are upfront.
## Save on memory and still at the speed of C++!!
= permuteIter(5, 7, TRUE, constraintFun = "prod",
p comparisonFun = c(">=","<"),
limitConstraints = c(3600, 4000),
keepResults = TRUE)
## Get the next n results
<- p@nextNIter(1048)
t
## N.B. keepResults = TRUE adds the 8th column
tail(t)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
#> [1043,] 5 4 4 3 4 1 4 3840
#> [1044,] 5 4 4 3 4 4 1 3840
#> [1045,] 5 4 4 4 1 3 4 3840
#> [1046,] 5 4 4 4 1 4 3 3840
#> [1047,] 5 4 4 4 3 1 4 3840
#> [1048,] 5 4 4 4 3 4 1 3840
## Continue iterating from where we left off
@nextIter()
p#> [1] 5 4 4 4 4 1 3 3840
@nextIter()
p#> [1] 5 4 4 4 4 3 1 3840
@nextIter()
p#> [1] 2 2 3 3 4 5 5 3600
## N.B. totalResults and totalRemaining are NA because there is no
## closed form solution for determining this.
@summary()
p#> $description
#> [1] "Permutations with repetition of 5 choose 7 where the prod is between 3600 and 4000"
#>
#> $currentIndex
#> [1] 1051
#>
#> $totalResults
#> [1] NA
#>
#> $totalRemaining
#> [1] NA
## Generate prime numbers
primeSieve(50)
#> [1] 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
## Many of the functions can produce results in
## parallel for even greater performance
= primeSieve(1e15, 1e15 + 1e8, nThreads = 4)
p
head(p)
#> [1] 1000000000000037 1000000000000091 1000000000000159
#> [4] 1000000000000187 1000000000000223 1000000000000241
tail(p)
#> [1] 1000000099999847 1000000099999867 1000000099999907
#> [4] 1000000099999919 1000000099999931 1000000099999963
## Count prime numbers less than n
primeCount(1e10)
#> [1] 455052511
## Get the prime factorization
set.seed(24028)
primeFactorize(sample(1e15, 3), namedList = TRUE)
#> $`701030825091514`
#> [1] 2 149 2352452433193
#>
#> $`83054168594779`
#> [1] 3098071 26808349
#>
#> $`397803024735610`
#> [1] 2 5 13 13 235386405169
RcppAlgos
but no
Rcpp
?Previous versions of RcppAlgos
relied on Rcpp to ease the burden of
exposing C++ to R. While the current version of RcppAlgos
does not utilize Rcpp
, it would not be possible without the
myriad of excellent contributions to Rcpp
.
If you would like to report a bug, have a question, or have suggestions for possible improvements, please file an issue.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.