The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Raquifer

Raquifer

Raquifer estimates the cumulative water influx into hydrocarbon reservoirs using un-steady and pseudo-steady state modeling approaches. It generates a data frame of cumulative water influx over time for edge-drive and bottom-drive aquifers. Van Everdingen and Hurst un-steady state model for the constant terminal pressure solution predicts the cumulative influx for edge-water drive aquifers with radial flow (Van Everdingen & Hurst, 1949). For the bottom-water drive aquifers with linear/radial flow, the Yildiz-Khosravi un-steady state model for the constant terminal pressure solution is used (Yildiz & Khosravi, 2007). Nabor and Barham linear flow model for the constant terminal pressure solution is used for the edge-water and bottom-water drive aquifers modeling(Nabor & Barham, 1964). For the linear and radial pseudo-steady state flow modeling in aquifers, the Fetkovich method is used (Fetkovich, 1971).

Cumulative water influx predictions are generated by three different functions: aquifer_param(), aquifer_time(), and aquifer_predict().

aquifer_param() arguments

aquifer_time() arguments

aquifer_predict() arguments

Installation

The Raquifer can be installed from CRAN with:

install.packages("Raquifer")

Examples

Example 1: Un-steady state radial flow, edge-water drive

library(Raquifer)
library(ggplot2)
library(magrittr)

aqu_time <- aquifer_time(x = c(0,0.368,2.439,4.957,7.732,11.926,18.126,30.044) * 365, unit = "day")

parameters <- aquifer_param(input_unit = "Field", output_unit = "Field", model = "uss", 
                            flow_type = "radial", water_drive = "edge", phi = 0.27, perm_h = 64.2, 
                            h_a = 20, r_a = 5 * 14892, r_R = 14892, tetha = 180,
                            mu_water = 0.485, c_water = 3.88e-6, c_rock = 2e-6, 
                            pressure = c(1640,1600,1400,1200,1000,800,600,400))

aqu_time
#> $t
#> [1]     0.000   134.320   890.235  1809.305  2822.180  4352.990  6615.990
#> [8] 10966.060
#> 
#> $unit
#> [1] "day"
#> 
#> $reference_date
#> [1] "2020-05-12"
#> 
#> attr(,"class")
#> [1] "day"  "time"

parameters
#> $input_unit
#> [1] "Field"
#> 
#> $output_unit
#> [1] "Field"
#> 
#> $model
#> [1] "veh_rad_edge"
#> 
#> $phi
#> [1] 0.27
#> 
#> $perm_h
#> [1] 64.2
#> 
#> $h_a
#> [1] 20
#> 
#> $r_a
#> [1] 74460
#> 
#> $r_R
#> [1] 14892
#> 
#> $tetha
#> [1] 180
#> 
#> $mu_water
#> [1] 0.485
#> 
#> $c_water
#> [1] 3.88e-06
#> 
#> $c_rock
#> [1] 2e-06
#> 
#> $pressure
#> [1] 1640 1600 1400 1200 1000  800  600  400
#> 
#> attr(,"class")
#> [1] "veh_rad_edge" "aquifer"

pred_veh <- aquifer_predict(aquifer_lst = parameters, time_lst = aqu_time)

head(pred_veh)
#>         Date Time (days)  We (MMbbl)
#> 1 2020-05-12       0.000  0.00000000
#> 2 2020-09-23     134.320  0.06185335
#> 3 2022-10-19     890.235  1.27831951
#> 4 2025-04-25    1809.305  4.19222802
#> 5 2028-02-02    2822.180  8.46586625
#> 6 2032-04-11    4352.990 15.65627937

pred_veh %>% ggplot(aes(x = `Time (days)`, y = `We (MMbbl)`)) +
  geom_point(size = 3, color = "blue") +
  theme_bw()

Example 2: Un-steady state radial flow, bottom-water drive

Example 3: Pseudo-steady state radial flow, edge-water drive

Example 4: Un-steady state linear flow, edge-water drive

Example 5: Un-steady state linear flow, bottom-water drive

Example 6: Pseudo-steady state linear flow, edge-water drive

Example 7: Pseudo-steady state linear flow, bottom-water drive

Example 8: Un-steady state radial flow, edge-water drive

Example 8: Un-steady state radial flow, edge-water drive

References

Fetkovich, M. J. (1971). A Simplified Approach to Water Influx Calculations-Finite Aquifer Systems. Journal of Petroleum Technology, 23(07), 814–828. https://doi.org/10.2118/2603-PA

Nabor, G. W., & Barham, R. H. (1964). Linear Aquifer Behavior. Journal of Petroleum Technology, 16(05), 561–563. https://doi.org/10.2118/791-PA

Van Everdingen, A. F., & Hurst, W. (1949). The Application of the Laplace Transformation to Flow Problems in Reservoirs. Journal of Petroleum Technology, 1(12), 305–324. https://doi.org/10.2118/949305-G

Yildiz, T., & Khosravi, A. (2007). An Analytical Bottomwaterdrive Aquifer Model for Material-Balance Analysis. SPE Reservoir Evaluation & Engineering, 10(06), 618–628. https://doi.org/10.2118/103283-PA

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.