The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
In this vignette, we outline the hierarchical models used in the RSTr package, along with the full-conditional distributions used for each update.
The CAR model used by RSTr is based on the model developed by Besag, York, and Mollié (1991) with modifications using inverse transform sampling for restricted informativeness based on Quick, et al. (2021):
For models using method = "binomial",
\[ \begin{split} Y_{i} &\sim \text{Binomial}(n_{i}, \lambda_{i}) \\ \theta_{i} &= \text{Logit}(\lambda_{i}) \\ \end{split} \]
For models using method = "poisson", \[
\begin{split}
Y_{i} &\sim \text{Poisson}(n_{i} \lambda_{i}) \\
\theta_{i} &= \text{Log}(\lambda_{i}) \\
\end{split}
\]
For both models,
\[ \begin{split} \theta_{i} &\sim \text{Normal}(\beta_{j} + Z_{i}, \tau^2), \\ i &=\{1,...,N_{s}\},\ j =\{1,...,N_{is}\} \\ p(\beta_{j}) &\propto 1 \\ Z &\sim \text{CAR}(\sigma^2) \\ \sigma^2 &\sim \text{InvGamma}(a_\sigma,b_\sigma) \\ \tau^2 &\sim \text{InvGamma}(a_\tau,b_\tau) \end{split} \]
The MCAR model used by RSTr is based on the model developed by Gelfand and Vounatsou (2003):
For models using method = "binomial",
\[ \begin{split} Y_{ik} &\sim \text{Binomial}(n_{ik}, \lambda_{ik}) \\ \theta_{ik} &= \text{Logit}(\lambda_{ik}) \\ \end{split} \]
For models using method = "poisson",
\[ \begin{split} Y_{ik} &\sim \text{Poisson}(n_{ik}, \lambda_{ik}) \\ \theta_{ik} &= \text{Log}(\lambda_{ik}) \\ \end{split} \]
For both models,
\[ \begin{split} \theta_{ik} &\sim \text{Normal}(\beta_{jk} + Z_{ik}, \tau_k^2), \\ i &=\{1,...,N_s\}, k =\{1,...,N_{g}\}, j=\{1,...,N_{is}\} \\ p(\beta_{jk}) &\propto 1 \\ Z &\sim \text{CAR}(G) \\ G &\sim \text{InvWishart}(\nu,G_0) \\ \tau^2 &\sim \text{InvGamma}(a_\tau,b_\tau) \end{split} \]
The MSTCAR model used by RSTr is based on the model developed by Quick, et al. (2017):
For models using method = "binomial",
\[ \begin{split} Y_{ikt} &\sim \text{Binomial}(n_{ikt}, \lambda_{ikt}) \\ \theta_{ikt} &= \text{Logit}(\lambda_{ikt}) \\ \end{split} \]
For models using method = "poisson",
\[ \begin{split} Y_{ikt} &\sim \text{Poisson}(n_{ikt} \lambda_{ikt}) \\ \theta_{ikt} &= \text{Log}(\lambda_{ikt}) \\ \end{split} \]
For both models,
\[ \begin{split} \theta_{ikt} &\sim \text{Normal}(\beta_{jkt} + Z_{ikt}, \tau_k^2), \\ i &=\{1,...,N_s\},\ k =\{1,...,N_g\},\ t=\{1,...,N_t\},\ j=\{1,...,N_{is}\} \\ p(\beta_{j}) &\propto 1 \\ Z &\sim \text{MSTCAR}(\mathcal{G}, \mathcal{R}), \ \mathcal{G}=\{G_1,...,G_{N_t}\}, \ \mathcal{R}=\{R_1,...,R_{N_g}\} \\ G_t &\sim \text{InvWishart}(A_G, \nu) \\ A_G &\sim \text{Wishart}(A_{G_0}, \nu_0) \\ R_k &= \text{AR}(1,\rho_k) \\ \rho_k &\sim \text{Beta}(a_{\rho}, b_{\rho}) \\ \tau_k^2 &\sim \text{InvGamma}(a_\tau,b_\tau) \end{split} \]
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.