The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Md Riaz Ahmed Khan mdriazahmed.khan@jacks.sdstate.edu
Thomas Brandenburger, PhD
thomas.brandenburger@sdstate.edu
Md Riaz Ahmed Khan
mdriazahmed.khan@jacks.sdstate.edu
The goal of ROCit is to easily compute, summarize, and visualize the performance of a binary classifier. ROCit package provides flexibility to easily evaluate threshold-bound metrics, such as, accuracy, misclassification rate, sensitivity, specificity, F-Score. . Also, ROC curve, along with AUC, can be obtained using different methods, such as empirical, binormal and non-parametric. ROCit encompasses a wide variety of methods for constructing confidence interval of ROC curve and AUC. ROCit features the option of constructing empirical gains table, which is a handy tool for direct marketing. The package offers options for commonly used visualization, such as, ROC curve, KS plot, lift plot.
This is a basic example which shows the workflow of assessing a binary classifier.
library(ROCit)
data("Loan")
summary(Loan$Status)
#> CO FP
#> 131 769
<- ifelse(Loan$Status == "FP", 0, 1) class
<- Loan$Score score
<- measureit(score = score, class = class,
mmeasure = c("ACC", "SENS", "SPEC", "FSCR"))
<- as.data.frame(cbind(Cutoff = m$Cutoff, Depth = m$Depth,
mymetrics Accuracy = m$ACC, Sensitivity = m$SENS,
Specificity = m$SPEC, `F-Score` = m$FSCR))
head(mymetrics)
#> Cutoff Depth Accuracy Sensitivity Specificity F-Score
#> 1 Inf 0.000000000 0.8544444 0.000000000 1.0000000 NaN
#> 2 269.1711 0.001111111 0.8555556 0.007633588 1.0000000 0.01515152
#> 3 267.3342 0.002222222 0.8544444 0.007633588 0.9986996 0.01503759
#> 4 266.5938 0.003333333 0.8533333 0.007633588 0.9973992 0.01492537
#> 5 265.2553 0.004444444 0.8522222 0.007633588 0.9960988 0.01481481
#> 6 263.8303 0.005555556 0.8533333 0.015267176 0.9960988 0.02941176
tail(mymetrics)
#> Cutoff Depth Accuracy Sensitivity Specificity F-Score
#> 897 103.236891 0.9955556 0.1500000 1 0.00520156 0.2551120
#> 898 93.941202 0.9966667 0.1488889 1 0.00390117 0.2548638
#> 899 70.836943 0.9977778 0.1477778 1 0.00260078 0.2546161
#> 900 -2.673036 0.9988889 0.1466667 1 0.00130039 0.2543689
#> 901 -5.449033 1.0000000 0.1455556 1 0.00000000 0.2541222
#> 902 -Inf 1.0000000 0.1455556 1 0.00000000 0.2541222
<- rocit(score = score, class = class)
rocit_object_empirical summary(rocit_object_empirical)
#>
#> Empirical ROC curve
#> Number of postive responses : 131
#> Number of negative responses : 769
#> Area under curve : 0.666315925311945
# plot(rocit_object_empirical, YIndex = F, values = F)
<- ciAUC(rocit_object_empirical, level = 0.95)
ci.auc print(ci.auc)
#>
#> estimated AUC : 0.666315925311945
#> AUC estimation method : empirical
#>
#> CI of AUC
#> confidence level = 95%
#> lower = 0.612575921206968 upper = 0.720055929416921
<- ciROC(rocit_object_empirical, level = 0.9)
ci.roc # plot(ci.roc)
<- gainstable(rocit_object_empirical, ngroup = 8)
gainstable print(gainstable, maxdigit = 2)
#> Bucket Obs CObs Depth Resp CResp RespRate CRespRate CCapRate Lift CLift
#> 1 1 112 112 0.12 30 30 0.27 0.27 0.23 1.84 1.84
#> 2 2 113 225 0.25 25 55 0.22 0.24 0.42 1.52 1.68
#> 3 3 113 338 0.38 21 76 0.19 0.22 0.58 1.28 1.54
#> 4 4 112 450 0.50 18 94 0.16 0.21 0.72 1.10 1.44
#> 5 5 112 562 0.62 10 104 0.09 0.19 0.79 0.61 1.27
#> 6 6 113 675 0.75 16 120 0.14 0.18 0.92 0.97 1.22
#> 7 7 113 788 0.88 5 125 0.04 0.16 0.95 0.30 1.09
#> 8 8 112 900 1.00 6 131 0.05 0.15 1.00 0.37 1.00
# plot(gainstable)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.