The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This package provides functions for performing robust multi-model subset selection.
You can install the stable version on R CRAN.
{r installation, eval = FALSE} install.packages("RMSS", dependencies = TRUE)
You can install the development version from GitHub
library(devtools)
::install_github("AnthonyChristidis/RMSS") devtools
# Required libraries
install.packages("mvnfast")
# Simulation parameters
<- 50
n <- 500
p <- 0.8
rho <- 0.2
rho.inactive <- 25
group.size <- 100
p.active <- 1
snr <- 0.2
contamination.prop
# Setting the seed
set.seed(0)
# Block Correlation
<- matrix(0, p, p)
sigma.mat 1:p.active, 1:p.active] <- rho.inactive
sigma.mat[for(group in 0:(p.active/group.size - 1))
*group.size+1):(group*group.size+group.size),(group*group.size+1):(group*group.size+group.size)] <- rho
sigma.mat[(groupdiag(sigma.mat) <- 1
# Simulation of beta vector
<- c(runif(p.active, 0, 5)*(-1)^rbinom(p.active, 1, 0.7), rep(0, p - p.active))
true.beta
# Setting the SD of the variance
<- as.numeric(sqrt(t(true.beta) %*% sigma.mat %*% true.beta)/sqrt(snr))
sigma
# Simulation of test data
<- 2e3
m <- mvnfast::rmvn(m, mu = rep(0, p), sigma = sigma.mat)
x_test <- x_test %*% true.beta + rnorm(m, 0, sigma)
y_test
# Simulation of uncontaminated data
<- mvnfast::rmvn(n, mu = rep(0, p), sigma = sigma.mat)
x <- x %*% true.beta + rnorm(n, 0, sigma)
y
# Contamination of data
<- 1:floor(n*contamination.prop)
contamination_indices <- 2
k_lev <- 100
k_slo <- x
x_train <- y
y_train <- true.beta
beta_cont !=0] <- beta_cont[true.beta!=0]*(1 + k_slo)
beta_cont[true.beta==0] <- k_slo*max(abs(true.beta))
beta_cont[true.betafor(cont_id in contamination_indices){
<- runif(p, min = -1, max = 1)
a <- a - as.numeric((1/p)*t(a) %*% rep(1, p))
a <- mvnfast::rmvn(1, rep(0, p), 0.1^2*diag(p)) + k_lev * a / as.numeric(sqrt(t(a) %*% solve(sigma.mat) %*% a))
x_train[cont_id,] <- t(x_train[cont_id,]) %*% beta_cont
y_train[cont_id]
}
# CV RMSS
<- cv.RMSS(x = x_train, y = y_train,
cv.rmss_fit n_models = 10,
h_grid = c(35, 40), t_grid = c(8, 10, 12), u_grid = c(1:10),
tolerance = 1e-1,
max_iter = 1e3,
neighborhood_search = FALSE,
neighborhood_search_tolerance = 1e-1,
n_folds = 5,
alpha = 1/4,
gamma = 1,
n_threads = 1)
<- coef(cv.rmss_fit,
rmss_coefs h_ind = cv.rmss_fit$h_opt, t_ind = cv.rmss_fit$t_opt, u_ind = cv.rmss_fit$u_opt,
group_index = 1:cv.rmss_fit$n_models)
<- sum(which((rmss_coefs[-1]!=0)) <= p.active)/p.active
sens_rmss <- sum(which((rmss_coefs[-1]!=0)) <= p.active)/sum(rmss_coefs[-1]!=0)
spec_rmss <- predict(cv.rmss_fit, newx = x_test,
rmss_preds h_ind = cv.rmss_fit$h_opt, t_ind = cv.rmss_fit$t_opt, u_ind = cv.rmss_fit$u_opt,
group_index = 1:cv.rmss_fit$n_models,
dynamic = FALSE)
mean((y_test - rmss_preds)^2)/sigma^2
This package is free and open source software, licensed under GPL (>= 2).
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.