The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Formatting Data Exported from REDCap

This vignette covers different methods for formatting the records from REDCap into an analysis ready data set. It is assumed that the reader is familiar with the process for exporting data from REDCap to R as described in vignette("api", package = "REDCapExporter")

For the purposes of this vignette we will use the example data sets provided in the package from the 2000-2001 National Hockey League Stanley Cup Champion Colorado Avalanche. The data was transcribed from Hockey Reference into a REDCap Project hosed at the University of Colorado Denver.

The data sets we will work with in this vignette are:

library(REDCapExporter)
avs_raw_core      # object returned from export_core(format = "csv")
avs_raw_metadata  # object returned from export_content(content = "metadata", format = "csv")
avs_raw_record    # object returned from export_content(content = "record", format = "csv")

There are two conceptual formatting tools provided by REDCapExporter:

  1. as.data.frame

  2. format_record

Coercion to data.frame

The object returned from export_content is a string in either csv or json format. To have that information as a data.frame call as.data.frame.

This method works for the metadata and records directly.

avs_metadata_DF <- as.data.frame(avs_raw_metadata)
avs_record_DF   <- as.data.frame(avs_raw_record)

For rcer_rccore objects returned by export_core all the elements can be coerced to data.frames via lapply

avs_core_DFs  <- lapply(avs_raw_core, as.data.frame)

The behavior of as.data.frame for these objects is to return a data.frame with all character columns.

avs_metadata_DF |> sapply(class) |> sapply(is.character) |> all()
## [1] TRUE
avs_record_DF   |> sapply(class) |> sapply(is.character) |> all()
## [1] TRUE

Obviously, this is not ideal for analysis. It does give the user a known starting point for formatting the records explicitly. However, REDCapExporter provides the format_record method to simplify this task by using the metadata from the REDCap project.

format_record

format_record uses the metadata to inform the storage mode of the elements of a data.frame. For example, after exporting the core of a REDCap project we can build a data.frame avsDF via

avsDF <- format_record(avs_raw_core)
str(avsDF, max.level = 0)
## Classes 'rcer_record' and 'data.frame':  32 obs. of  75 variables:

Note: the above uses the core export from REDCap. You can use just the record and metadata to get the same result:

identical(
  format_record(avs_raw_core),
  format_record(avs_raw_record, avs_raw_metadata)
)
## [1] TRUE

Let’s look at the avsDF object (presented as a nice human readable table)

record_id uniform_number firstname lastname hof nationality position birthdate first_nhl_game last_nhl_game height weight shoots catches experience roster_complete gp goals assists points plusmn pimi goals_ev goals_pp goals_sh goals_gw assists_ev assists_pp assists_sh shots shooting_percentage toi atoi regular_season_scoring_complete wins losses ties_otl goals_against shots_against saves save_percentage gaa so regular_season_goalies_complete gp_postseason goals_postseason assists_postseason points_postseason plusmn_postseason pimi_postseason goals_ev_postseason goals_pp_postseason goals_sh_postseason goals_gw_postseason assists_ev_postseason assists_pp_postseason assists_sh_postseason shots_postseason shooting_percentage_postseason toi_postseason atoi_postseason post_season_scoring_complete wins_postseason losses_postseason ties_otl_postseason goals_allowed_postseason saves_postseason save_percentage_postseason gaa_postseason so_postseason post_season_goalies_complete eg_checkbox___cb01 eg_checkbox___cb02 eg_checkbox___cb03 extras_complete
1 1 David Aebischer 0 Swiss Goal 1978-02-07 2001-04-07 2007-10-10 73 185 NA Left 0 Complete 26 0 1 1 0 0 0 0 0 0 NA NA NA 0 0.000000 1393 53M 34S Complete 12 7 3 52 538 486 0.9033457 2.24 3 Complete 1 0 0 0 0 0 0 0 0 0 NA NA NA 0 NA 1 32S Complete 0 0 NA 0 0 0.000 0.0 0 Complete 1 0 0 Incomplete
2 46 Yuri Babenko 0 USSR Center 1978-01-02 2000-11-22 2000-11-29 73 200 Left NA 0 Complete 3 0 0 0 0 0 0 0 0 0 0 0 0 2 0.000000 32 10M 34S Complete NA NA NA NA NA NA NA NA NA Complete 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Complete NA NA NA NA NA NA NA NA Complete 0 1 0 Incomplete
3 45 Rick Berry 0 Canada Defence 1978-11-04 2001-01-07 2004-04-04 74 210 Left NA 0 Complete 19 0 4 4 5 38 0 0 0 0 4 0 0 10 0.000000 231 12M 8S Complete NA NA NA NA NA NA NA NA NA Complete 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Complete NA NA NA NA NA NA NA NA Complete 0 0 0 Incomplete
4 4 Rob Blake 1 Canada Defence 1969-12-10 1990-03-27 2010-05-23 76 220 Right NA 11 Complete 13 2 8 10 11 8 1 1 0 1 6 2 0 44 4.545454 339 26M 3S Complete NA NA NA NA NA NA NA NA NA Complete 23 6 13 19 6 16 3 3 0 0 NA NA NA 83 7.228916 677 29M 26S Complete NA NA NA NA NA NA NA NA Complete 0 0 0 Incomplete
5 77 Ray Bourque 1 Canada Defence 1960-12-28 1979-10-11 2001-06-09 71 219 Left NA 21 Complete 80 7 52 59 25 48 3 2 2 0 21 31 0 216 3.240741 2088 26M 6S Complete NA NA NA NA NA NA NA NA NA Complete 21 4 6 10 9 12 1 3 0 1 NA NA NA 49 8.163265 599 28M 32S Complete NA NA NA NA NA NA NA NA Complete 0 1 0 Incomplete
6 7 Greg de Vries 0 Canada Defence 1973-01-04 1996-01-17 2009-04-10 74 205 Left NA 5 Complete 79 5 12 17 23 51 5 0 0 0 11 0 1 76 6.578947 1351 17M 6S Complete NA NA NA NA NA NA NA NA NA Complete 23 0 1 1 5 20 0 0 0 0 NA NA NA 20 0.000000 328 14M 17S Complete NA NA NA NA NA NA NA NA Complete 1 0 0 Incomplete
7 18 Adam Deadmarsh 0 Canada Right Wing 1975-05-10 1995-01-21 2002-12-15 72 205 Right NA 6 Complete 39 13 13 26 -2 59 6 7 0 2 7 6 0 86 15.116279 687 17M 38S Complete NA NA NA NA NA NA NA NA NA Complete 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Complete NA NA NA NA NA NA NA NA Complete 1 1 0 Incomplete
8 11 Chris Dingman 0 Canada Left Wing 1976-07-06 1997-10-01 2006-04-25 76 235 Left NA 3 Complete 41 1 1 2 -3 108 1 0 0 0 1 0 0 33 3.030303 264 6M 26S Complete NA NA NA NA NA NA NA NA NA Complete 16 0 4 4 3 14 0 0 0 0 NA NA NA 8 0.000000 101 6M 18S Complete NA NA NA NA NA NA NA NA Complete 1 1 0 Incomplete
9 37 Chris Drury 0 USA Left Wing 1976-08-20 1998-10-10 2011-04-23 70 191 Right NA 2 Complete 71 24 41 65 6 47 13 11 0 5 22 18 0 204 11.764706 1281 18M 3S Complete NA NA NA NA NA NA NA NA NA Complete 23 11 5 16 5 4 9 2 0 2 NA NA NA 62 17.741936 439 19M 6S Complete NA NA NA NA NA NA NA NA Complete 0 0 0 Incomplete
10 52 Adam Foote 0 Canada Defence 1971-07-10 1991-10-19 2011-04-10 74 220 Right NA 9 Complete 35 3 12 15 6 42 1 1 1 1 7 5 0 59 5.084746 888 25M 22S Complete NA NA NA NA NA NA NA NA NA Complete 23 3 4 7 5 47 2 1 0 1 NA NA NA 28 10.714286 652 28M 22S Complete NA NA NA NA NA NA NA NA Complete 1 1 0 Incomplete
11 21 Peter Forsberg 1 Sweeden Center 1973-07-20 1995-01-11 2011-02-12 72 205 Left NA 6 Complete 73 27 62 89 23 54 12 12 2 5 34 24 4 178 15.168539 1518 20M 48S Complete NA NA NA NA NA NA NA NA NA Complete 11 4 10 14 5 6 3 1 0 2 NA NA NA 23 17.391304 241 21M 55S Complete NA NA NA NA NA NA NA NA Complete 0 0 0 Incomplete
12 5 Alexei Gusarov 0 USSR Defence 1964-07-08 1990-12-15 2001-05-21 75 185 Left NA 10 Complete 9 0 1 1 2 6 0 0 0 0 1 0 0 4 0.000000 135 14M 59S Complete NA NA NA NA NA NA NA NA NA Complete 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Complete NA NA NA NA NA NA NA NA Complete 1 0 0 Incomplete
13 23 Milan Hejduk 0 Czechoslovakia Right Wing 1976-02-14 1998-10-10 2013-04-27 72 190 Right NA 2 Complete 80 41 38 79 32 36 28 12 1 9 21 15 2 213 19.248826 1589 19M 52S Complete NA NA NA NA NA NA NA NA NA Complete 23 7 16 23 8 6 3 4 0 1 NA NA NA 51 13.725490 496 21M 33S Complete NA NA NA NA NA NA NA NA Complete 0 0 0 Incomplete
14 13 Dan Hinote 0 USA Center 1977-01-30 1999-10-05 2009-04-21 72 187 Right NA 1 Complete 76 5 10 15 1 51 4 1 0 1 8 2 0 69 7.246377 787 10M 21S Complete NA NA NA NA NA NA NA NA NA Complete 23 2 4 6 4 21 2 0 0 0 NA NA NA 16 12.500000 192 8M 22S Complete NA NA NA NA NA NA NA NA Complete 0 1 0 Incomplete
15 24 Jon Klemm 0 Canada Defence 1970-01-08 1992-02-23 2008-04-03 74 205 Right NA 8 Complete 78 4 11 15 22 54 2 2 0 2 6 3 2 97 4.123711 1554 19M 56S Complete NA NA NA NA NA NA NA NA NA Complete 22 1 2 3 7 16 1 0 0 1 NA NA NA 14 7.142857 357 16M 15S Complete NA NA NA NA NA NA NA NA Complete 1 1 0 Incomplete
16 9 Brad Larsen 0 Canada Left Wing 1977-06-28 NA NA 72 210 Left NA 1 Incomplete 9 0 0 0 1 0 0 0 0 0 0 0 0 3 0.000000 84 9M 17S Complete NA NA NA NA NA NA NA NA NA Complete 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Complete NA NA NA NA NA NA NA NA Complete 0 0 0 Incomplete
17 29 Eric Messier 0 Canada Left Wing 1973-10-29 1996-11-11 2003-11-21 74 195 Left NA 4 Complete 64 5 7 12 -3 26 5 0 0 1 7 0 0 60 8.333333 786 12M 16S Complete NA NA NA NA NA NA NA NA NA Complete 23 2 2 4 0 14 2 0 0 0 NA NA NA 20 10.000000 374 16M 16S Complete NA NA NA NA NA NA NA NA Incomplete 0 0 0 Incomplete
18 3 Aaron Miller 0 USA Defence 1971-08-11 1994-01-15 2008-03-06 75 210 Right NA 7 Complete 56 4 9 13 19 29 4 0 0 0 8 0 1 49 8.163265 1032 18M 25S Complete NA NA NA NA NA NA NA NA NA Complete 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Complete NA NA NA NA NA NA NA NA Complete 1 1 0 Incomplete
19 2 Bryan Muir 0 Canada Defence 1973-06-08 1996-03-08 2007-04-07 75 224 Left NA 4 Unverified 8 0 0 0 0 4 0 0 0 0 0 0 0 3 0.000000 66 8M 14S Complete NA NA NA NA NA NA NA NA NA Complete 3 0 0 0 0 0 0 0 0 0 NA NA NA 0 NA 10 3M 15S Complete NA NA NA NA NA NA NA NA Complete 1 0 0 Incomplete
20 39 Ville Nieminen 0 Finland Left Wing 1977-04-06 2000-01-29 2007-04-05 71 200 Left NA 1 Complete 50 14 8 22 8 38 12 2 0 3 5 3 0 68 20.588235 622 12M 26S Complete NA NA NA NA NA NA NA NA NA Complete 23 4 6 10 -1 20 1 3 0 1 NA NA NA 39 10.256410 326 14M 10S Complete NA NA NA NA NA NA NA NA Complete 0 1 0 Incomplete
21 27 Scott Parker 0 USA Right Wing 1978-01-29 1998-11-28 2008-03-11 77 240 Right NA 10 Complete 69 2 3 5 -2 155 2 0 0 1 3 0 0 35 5.714286 394 5M 42S Complete NA NA NA NA NA NA NA NA NA Complete 4 0 0 0 0 2 0 0 0 0 NA NA NA 0 NA 9 2M 12S Complete NA NA NA NA NA NA NA NA Complete 0 0 0 Incomplete
22 25 Shjon Podein 0 USA Right Wing 1968-03-05 1993-01-09 2003-04-22 74 200 Left NA 8 Complete 82 15 17 32 7 68 15 0 0 3 17 0 0 137 10.948905 1180 14M 23S Complete NA NA NA NA NA NA NA NA NA Complete 23 2 3 5 3 14 2 0 0 1 NA NA NA 16 12.500000 345 14M 59S Complete NA NA NA NA NA NA NA NA Complete 1 0 0 Incomplete
23 4-44 Nolan Pratt 0 Canda Defence 1975-08-14 1996-10-05 2008-04-03 75 207 Left NA 4 Complete 46 1 2 3 2 40 1 0 0 1 2 0 0 26 3.846154 452 9M 50S Complete NA NA NA NA NA NA NA NA NA Complete 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Complete NA NA NA NA NA NA NA NA Complete 1 1 0 Incomplete
24 63 Joel Prpic 0 Canada Center 1974-09-25 NA NA 78 225 Left NA 2 Incomplete 3 0 0 0 0 2 0 0 0 0 0 0 0 0 NA 29 9M 47S Complete NA NA NA NA NA NA NA NA NA Complete 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Complete NA NA NA NA NA NA NA NA Complete 1 1 0 Incomplete
25 14 Dave Reid 0 Canada Right Wing 1964-05-15 1983-12-23 2001-06-09 73 217 Left NA 17 Complete 73 1 9 10 1 21 1 0 0 0 8 0 1 66 1.515151 721 9M 53S Complete NA NA NA NA NA NA NA NA NA Complete 18 0 4 4 2 6 0 0 0 0 NA NA NA 8 0.000000 164 9M 8S Complete NA NA NA NA NA NA NA NA Complete 0 1 0 Incomplete
26 28 Steve Reinprecht 0 Canada Center 1976-05-07 NA NA 72 195 Left NA 1 Incomplete 21 3 4 7 -1 2 3 0 0 0 3 0 1 28 10.714286 328 15M 38S Complete NA NA NA NA NA NA NA NA NA Complete 22 2 3 5 0 2 2 0 0 0 NA NA NA 14 14.285714 267 12M 9S Complete NA NA NA NA NA NA NA NA Complete 0 1 0 Incomplete
27 33 Patrick Roy 1 Canada Goal 1965-10-05 1985-02-23 2003-04-22 74 185 NA Left 16 Complete 62 0 5 5 0 10 0 0 0 0 NA NA NA 0 NA 3565 57M 30S Complete 40 13 7 132 1513 1281 0.8466623 2.22 4 Complete 23 0 1 1 0 0 0 0 0 0 NA NA NA 0 NA 1451 NA Incomplete 16 7 NA 41 622 0.934 1.7 4 Complete 0 0 0 Incomplete
28 19 Joe Sakic 1 Canada Center 1969-07-07 1988-10-06 2008-11-28 71 195 Left NA 12 Complete 82 54 64 118 45 30 32 19 3 12 34 27 3 332 16.265060 1887 23M 1S Complete NA NA NA NA NA NA NA NA NA Complete 21 13 13 26 6 6 8 5 0 3 NA NA NA 79 16.455696 452 21M 33S Complete NA NA NA NA NA NA NA NA Complete 1 1 0 Incomplete
29 44 Rob Shearer 0 Canada Center 1976-10-19 2000-11-11 2000-11-13 70 190 Right NA 0 Complete 2 0 0 0 -2 0 0 0 0 0 0 0 0 0 NA 14 6M 45S Complete NA NA NA NA NA NA NA NA NA Complete 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Complete NA NA NA NA NA NA NA NA Complete 0 1 0 Incomplete
30 41 Martin Skoula 0 Czechoslovakia Defence 1979-10-28 1999-10-05 2010-04-22 75 226 Left NA 11 Complete 82 8 17 25 8 38 5 3 0 2 11 6 0 108 7.407407 1697 20M 41S Complete NA NA NA NA NA NA NA NA NA Complete 23 1 4 5 1 8 1 0 0 0 NA NA NA 14 7.142857 276 11M 59S Complete NA NA NA NA NA NA NA NA Complete 1 0 0 Incomplete
31 40 Alex Tanguay 0 Canada Left Wing 1979-11-21 1999-10-05 2016-04-19 73 194 Left NA 1 Complete 82 27 50 77 35 37 19 7 1 3 39 11 0 135 20.000000 1464 17M 51S Complete NA NA NA NA NA NA NA NA NA Complete 23 6 15 21 13 8 5 1 0 2 NA NA NA 37 16.216216 444 19M 18S Complete NA NA NA NA NA NA NA NA Complete 0 0 0 Incomplete
32 26 Stephane Yelle 0 Canada Center 1974-05-09 1995-10-06 2010-04-24 74 182 Left NA 5 Complete 50 4 10 14 -3 20 3 0 1 0 10 0 0 54 7.407407 723 14M 28S Complete NA NA NA NA NA NA NA NA NA Complete 23 1 2 3 2 8 1 0 0 1 NA NA NA 23 4.347826 319 13M 52S Complete NA NA NA NA NA NA NA NA Complete 0 0 0 Incomplete

Now, consider the classes of the columns. Start by looking at a few columns which look like they are numeric values, record_id, uniform_number, height, and points.

cols <- c("record_id", "uniform_number", "height", "points")
head(avsDF[, cols], n = 3)
##   record_id uniform_number height points
## 1         1              1     73      1
## 2         2             46     73      0
## 3         3             45     74      4
sapply(avsDF[, cols], class)
##      record_id uniform_number         height         points 
##    "character"    "character"      "integer"      "numeric"

Why are record_id and uniform_number, stored as characters whereas height and points (sum of goals scored and assists) integer and numeric values respectively? The answer is in the metadata.

avs_metadata_DF[avs_metadata_DF$field_name %in% cols, ]
field_name form_name section_header field_type field_label select_choices_or_calculations field_note text_validation_type_or_show_slider_number text_validation_min text_validation_max identifier branching_logic required_field custom_alignment question_number matrix_group_name matrix_ranking field_annotation
record_id roster text Record ID
uniform_number roster text Uniform Number
height roster text Height in inches integer 60 84
points regular_season_scoring calc Points [goals]+[assists]

Notice that for the record_id and uniform_number the field_type is “text” with no value for “select_choices_or_calculations” and no value for “text_validation_type_or_show_slider_number”. This is interpreted, then, as just a text field and should be character vector in the data.frame. Obviously the user could coerce to integer of numeric is desired and if appropriate.

For height, note that the field_type is “text” and the “text_validation_type_or_show_slider_number” is “integer”, hence the coercion from the raw data to integer when building the data.frame. Lastly, the points are a calculated field and set to numeric.

REDCapExporter attempts to make reasonable assumptions for the data types base on the metadata. For example, dates in REDCap can by entered and validated in Year-Month-Day, Month-Day-Year, and Day-Month-Year formats. The raw data is all in Year-Month-Day format.

field_name field_type field_label field_note text_validation_type_or_show_slider_number
birthdate text Birthdate Format: M-D-Y date_mdy
first_nhl_game text Date of first NHL game date_dmy
last_nhl_game text Date of last NHL game date_ymd

The coercion that will be used when calling format_record is defined by an implicit call to col_type which uses the metadata, in raw or formatted form, to determine the coercion.

identical(col_type(avs_raw_metadata), col_type(avs_metadata_DF))
## [1] TRUE
ct <- col_type(avs_metadata_DF)

Each of the elements of ct are applied to the column of the data frame with the same name. Examples: The record_id is to be a character string by default.

ct[["record_id"]]
## as.character(record_id)

If the user would prefer the record_id to be an integer we can modify ct and apply it explicitly when calling format_record.

ct[["record_id"]] |> str()
##  language as.character(record_id)
ct[["record_id"]] <- expression(as.integer(record_id))
avsDF2 <- format_record(avs_raw_core, col_type = ct)
## Ignoring metadata, using col_type

Two notes to make here, first, we can see that the storage mode is different between avsDF$record_id and avsDF2$record_id.

class(avsDF$record_id)
## [1] "character"
class(avsDF2$record_id)
## [1] "integer"

Second, there is a message (not a warning), that the metadata that is part of the avs_raw_core object, is not being used to define the column types.

If you want to suppress that message you can use

suppressMessages(format_record(avs_raw_core, col_type = ct))

or use the records as the object passed to format_record

format_record(avs_record_DF, col_type = ct)

By default, variables recorded in REDCap via radio buttons or dropdown lists are formatted as factors. For example, the position of the player is a factor.

class(avsDF$position)
## [1] "factor"
summary(avsDF$position)
##       Goal  Left Wing Right Wing     Center    Defence 
##          2          6          5          8         11

If you’d prefer to have all these variables stored as characters instead of factors you can modify the call to col_type

ct <- col_type(avs_raw_metadata, factors = FALSE)
avsDF2 <- format_record(avs_raw_record, col_type = ct)
class(avsDF2$position)
## [1] "character"
summary(avsDF2$position)
##    Length     Class      Mode 
##        32 character character
table(avsDF2$position)
## 
##     Center    Defence       Goal  Left Wing Right Wing 
##          8         11          2          6          5

The default formatting is documented in the manual file The implemented code is within the S3 method:

?col_type

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.