The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
RCNA was designed with the purpose of detecting copy number alterations on targeted exon sequencing. While detecting copy number alterations are typically difficult when using discrete support, the RCNA package uses a conservative neighbor-based approach to provide robust results where previous low cost methods such as RNA microarrays cannot. While the regions of interest are not specifically required to be genes (or even exons for that matter) the example we provide in this vignette is performed on artificial data modeled after the original use-case in our paper.
The workflow for RCNA can be summarized as the following: - Estimate the GC-content-related bias present in the raw coverage data - Correct the GC-content bias based on the previous estimation - Estimate the normal karyotype ranges for each gene in the annotation file - Estimate the copy number alteration ratio based on the normal karyotype range estimations
These steps can be executed as their own commmands, or using the
run_RCNA
function, as seen in the proceeding sections.
The data we use for this vignette can be found in the
data/
folder under vignette
. This dataset has
a number of genes specified in the annotation file, and the sample
names, raw coverage files, and chrX normalization are specified in
sample.csv
. Below you can find how we transform the data
from the raw flat files into a special S4 object used for analysis.
library(RCNA)
samples <- read.csv(system.file("vignette", "samples.csv", package = "RCNA"), stringsAsFactors = FALSE)
new.obj <- create_RCNA_object(sample.names = samples$sample.name,
ano.file = system.file("vignette" ,"annotations.csv", package = "RCNA"),
out.dir = 'output',
file.raw.coverage = file.path("data", samples$raw.cov.file),
norm.cov.matrix = file.path("output", "norm-cov-matrix.csv.gz"),
nkr = 0.9,
x.norm = samples$x.norm,
low.score.cutoff = -0.5,
high.score.cutoff = 0.5,
ncpu = ncpu)
new.obj
#> An object of class "RCNA_object"
#> Slot "sample.names":
#> [1] "sample-0001" "sample-0002" "sample-0003" "sample-0004" "sample-0005" "sample-0006" "sample-0007" "sample-0008" "sample-0009" "sample-0010"
#>
#> Slot "ano.file":
#> [1] "/home/mbradley/R/x86_64-pc-linux-gnu-library/4.2/RCNA/vignette/annotations.csv"
#>
#> Slot "out.dir":
#> [1] "output"
#>
#> Slot "ncpu":
#> [1] 4
#>
#> Slot "win.size":
#> [1] 75
#>
#> Slot "gc.step":
#> [1] 0.01
#>
#> Slot "estimate_gc":
#> [1] TRUE
#>
#> Slot "nkr":
#> [1] 0.9
#>
#> Slot "norm.cov.matrix":
#> [1] "output/norm-cov-matrix.csv.gz"
#>
#> Slot "low.score.cutoff":
#> [1] -0.5
#>
#> Slot "high.score.cutoff":
#> [1] 0.5
#>
#> Slot "gcParams":
#> file.raw.coverage sample.names file.corrected.coverage
#> 1 data/sample-0001.txt.gz sample-0001 output/gc/sample-0001.corrected.txt.gz
#> 2 data/sample-0002.txt.gz sample-0002 output/gc/sample-0002.corrected.txt.gz
#> 3 data/sample-0003.txt.gz sample-0003 output/gc/sample-0003.corrected.txt.gz
#> 4 data/sample-0004.txt.gz sample-0004 output/gc/sample-0004.corrected.txt.gz
#> 5 data/sample-0005.txt.gz sample-0005 output/gc/sample-0005.corrected.txt.gz
#> 6 data/sample-0006.txt.gz sample-0006 output/gc/sample-0006.corrected.txt.gz
#> 7 data/sample-0007.txt.gz sample-0007 output/gc/sample-0007.corrected.txt.gz
#> 8 data/sample-0008.txt.gz sample-0008 output/gc/sample-0008.corrected.txt.gz
#> 9 data/sample-0009.txt.gz sample-0009 output/gc/sample-0009.corrected.txt.gz
#> 10 data/sample-0010.txt.gz sample-0010 output/gc/sample-0010.corrected.txt.gz
#>
#> Slot "nkrParams":
#> file.nkr.coverage x.norm sample.names
#> 1 output/gc/sample-0001.corrected.txt.gz FALSE sample-0001
#> 2 output/gc/sample-0002.corrected.txt.gz FALSE sample-0002
#> 3 output/gc/sample-0003.corrected.txt.gz FALSE sample-0003
#> 4 output/gc/sample-0004.corrected.txt.gz FALSE sample-0004
#> 5 output/gc/sample-0005.corrected.txt.gz FALSE sample-0005
#> 6 output/gc/sample-0006.corrected.txt.gz FALSE sample-0006
#> 7 output/gc/sample-0007.corrected.txt.gz FALSE sample-0007
#> 8 output/gc/sample-0008.corrected.txt.gz FALSE sample-0008
#> 9 output/gc/sample-0009.corrected.txt.gz FALSE sample-0009
#> 10 output/gc/sample-0010.corrected.txt.gz FALSE sample-0010
#>
#> Slot "scoreParams":
#> file.score.coverage sample.names
#> 1 output/gc/sample-0001.corrected.txt.gz sample-0001
#> 2 output/gc/sample-0002.corrected.txt.gz sample-0002
#> 3 output/gc/sample-0003.corrected.txt.gz sample-0003
#> 4 output/gc/sample-0004.corrected.txt.gz sample-0004
#> 5 output/gc/sample-0005.corrected.txt.gz sample-0005
#> 6 output/gc/sample-0006.corrected.txt.gz sample-0006
#> 7 output/gc/sample-0007.corrected.txt.gz sample-0007
#> 8 output/gc/sample-0008.corrected.txt.gz sample-0008
#> 9 output/gc/sample-0009.corrected.txt.gz sample-0009
#> 10 output/gc/sample-0010.corrected.txt.gz sample-0010
#>
#> Slot "commands":
#> list()
Note: While the samples and annotation files have been included with this package, the raw coverage files are not included in this package as they are larger than what is allowed by CRAN. A release of the raw data may be included in future updates to this vignette.
The form of the coverage file should be a space-separated file with no headers and match the exact format as seen below. The columns should represent (1) chromosome, (2) position, (3) target ID - this is optional but not used, (4) coverage in read depth, and (5) the DNA nucleotide base. This vignette uses 10 samples, each spanning 96 genes and exactly 336,583 base pairs.
head(read.table(file.path("data", "sample-0001.txt.gz"), sep = " "))
#> V1 V2 V3 V4 V5
#> 1 chr1 1787331 r456 977 T
#> 2 chr1 1787332 r456 1004 T
#> 3 chr1 1787333 r456 991 A
#> 4 chr1 1787334 r456 994 G
#> 5 chr1 1787335 r456 1049 T
#> 6 chr1 1787336 r456 1022 T
The annotation file must be a comma-separated file with the columns seen below, including headers. They are (1) the name of the genetic feature, such as a gene name (2) chromosome, (3) feature start position, and (4) feature end position. This vignette uses two genes as features.
The first step to the RCNA workflow is to estimate the GC-content
bias in the raw coverage data. This is done using a sliding window
approach, which first estimates the GC-content. The GC-content is then
normalized against the mean coverage across all bases in the coverage
file. Lastly, a corrective multiplicative factor is calculated for each
GC-content “bin”. Each bin represents a certain percentage of GC-content
in a given window. This correction is then applied iteratively using a
second sliding window. The size of the sliding window (in bp) can be
specified using the win.size
parameter (default = 75 bp).
For this example we will use both the default gc.step
and
win.size
parameters. This step can be accomplished by using
the correct_gc_bias
function, as shown below.
Note on performance: This function will train and correct the entire coverage file. This is beneficial to the accuracy of the correction, as running the correction on only a few genes can result in biased results. Keeping this in mind, the run-time of the algorithm scales linearly in respect to both number of bases as well as the number of samples causing this step to occupy a vast majority of the entire workflow’s run-time. We recommend using a pre-determined GC factor file or providing pre-corrected coverage files if possible to cut down on the execution time.
gc.res <- correct_gc_bias(new.obj, estimate_gc = TRUE, verbose = TRUE)
#> No output file column labeled `file.gc.factor` - defaulting to sample names. See `?correct_gc_bias()` for more information.
#> Beginning GC estimation
#> Calculating GC bias correction
#> Feature score estimation succeeded!
gc.res[[1]]
#> An object of class "RCNA_analysis"
#> Slot "call":
#> [1] "estimate_gc_bias"
#>
#> Slot "params":
#> $file.raw.coverage
#> [1] "data/sample-0001.txt.gz" "data/sample-0002.txt.gz" "data/sample-0003.txt.gz" "data/sample-0004.txt.gz" "data/sample-0005.txt.gz" "data/sample-0006.txt.gz" "data/sample-0007.txt.gz" "data/sample-0008.txt.gz" "data/sample-0009.txt.gz"
#> [10] "data/sample-0010.txt.gz"
#>
#> $file.gc.factor
#> [1] "output/gc/sample-0001.gc.factor.txt" "output/gc/sample-0002.gc.factor.txt" "output/gc/sample-0003.gc.factor.txt" "output/gc/sample-0004.gc.factor.txt" "output/gc/sample-0005.gc.factor.txt" "output/gc/sample-0006.gc.factor.txt"
#> [7] "output/gc/sample-0007.gc.factor.txt" "output/gc/sample-0008.gc.factor.txt" "output/gc/sample-0009.gc.factor.txt" "output/gc/sample-0010.gc.factor.txt"
#>
#>
#> Slot "res.files":
#> $file.gc.factor
#> [1] "output/gc/sample-0001.gc.factor.txt" "output/gc/sample-0002.gc.factor.txt" "output/gc/sample-0003.gc.factor.txt" "output/gc/sample-0004.gc.factor.txt" "output/gc/sample-0005.gc.factor.txt" "output/gc/sample-0006.gc.factor.txt"
#> [7] "output/gc/sample-0007.gc.factor.txt" "output/gc/sample-0008.gc.factor.txt" "output/gc/sample-0009.gc.factor.txt" "output/gc/sample-0010.gc.factor.txt"
gc.res[[2]]
#> An object of class "RCNA_analysis"
#> Slot "call":
#> [1] "correct_gc_bias"
#>
#> Slot "params":
#> $win.size
#> [1] 75
#>
#> $gcParams
#> file.raw.coverage file.corrected.coverage file.gc.factor sample.names
#> 1 data/sample-0001.txt.gz output/gc/sample-0001.corrected.txt.gz output/gc/sample-0001.gc.factor.txt sample-0001
#> 2 data/sample-0002.txt.gz output/gc/sample-0002.corrected.txt.gz output/gc/sample-0002.gc.factor.txt sample-0002
#> 3 data/sample-0003.txt.gz output/gc/sample-0003.corrected.txt.gz output/gc/sample-0003.gc.factor.txt sample-0003
#> 4 data/sample-0004.txt.gz output/gc/sample-0004.corrected.txt.gz output/gc/sample-0004.gc.factor.txt sample-0004
#> 5 data/sample-0005.txt.gz output/gc/sample-0005.corrected.txt.gz output/gc/sample-0005.gc.factor.txt sample-0005
#> 6 data/sample-0006.txt.gz output/gc/sample-0006.corrected.txt.gz output/gc/sample-0006.gc.factor.txt sample-0006
#> 7 data/sample-0007.txt.gz output/gc/sample-0007.corrected.txt.gz output/gc/sample-0007.gc.factor.txt sample-0007
#> 8 data/sample-0008.txt.gz output/gc/sample-0008.corrected.txt.gz output/gc/sample-0008.gc.factor.txt sample-0008
#> 9 data/sample-0009.txt.gz output/gc/sample-0009.corrected.txt.gz output/gc/sample-0009.gc.factor.txt sample-0009
#> 10 data/sample-0010.txt.gz output/gc/sample-0010.corrected.txt.gz output/gc/sample-0010.gc.factor.txt sample-0010
#>
#> $gc.step
#> [1] 0.01
#>
#>
#> Slot "res.files":
#> $file.corrected.coverage
#> file.gc.factor file.corrected.coverage
#> 1 output/gc/sample-0001.gc.factor.txt output/gc/sample-0001.corrected.txt.gz
#> 2 output/gc/sample-0002.gc.factor.txt output/gc/sample-0002.corrected.txt.gz
#> 3 output/gc/sample-0003.gc.factor.txt output/gc/sample-0003.corrected.txt.gz
#> 4 output/gc/sample-0004.gc.factor.txt output/gc/sample-0004.corrected.txt.gz
#> 5 output/gc/sample-0005.gc.factor.txt output/gc/sample-0005.corrected.txt.gz
#> 6 output/gc/sample-0006.gc.factor.txt output/gc/sample-0006.corrected.txt.gz
#> 7 output/gc/sample-0007.gc.factor.txt output/gc/sample-0007.corrected.txt.gz
#> 8 output/gc/sample-0008.gc.factor.txt output/gc/sample-0008.corrected.txt.gz
#> 9 output/gc/sample-0009.gc.factor.txt output/gc/sample-0009.corrected.txt.gz
#> 10 output/gc/sample-0010.gc.factor.txt output/gc/sample-0010.corrected.txt.gz
new.obj@commands = gc.res
The return value of correct_gc_bias
is an
RCNA_analysis
object which documents the workflow
steps.
Alternatively, you can also choose not to estimate the GC bias and instead use a GC factor file. We can inspect the GC factor file that we generated from the previous step to see what the factor file should look like.
gc.file <- read.table(file.path("output", "gc", "sample-0001.gc.factor.txt"), sep = "\t", stringsAsFactors = FALSE)
colnames(gc.file) = c("Percent.GC", "Coverage.Correction.Factor")
gc.file = gc.file[gc.file$Coverage.Correction.Factor > 0,]
head(gc.file, n = 15)
#> Percent.GC Coverage.Correction.Factor
#> 14 0.13 0.14400
#> 15 0.14 0.13987
#> 16 0.15 0.15162
#> 17 0.16 0.16245
#> 18 0.17 0.19365
#> 19 0.18 0.24451
#> 20 0.19 0.32753
#> 21 0.20 0.36505
#> 22 0.21 0.50538
#> 23 0.22 0.60806
#> 24 0.23 0.63844
#> 25 0.24 0.68623
#> 26 0.25 0.70939
#> 27 0.26 0.76110
#> 28 0.27 0.75852
In the GC estimation step, a sliding window is applied to calculate
the number of G and C bases within the window. Additionally, the window
calculates the average coverage within the window normalized against
mean coverage across all bases and is constantly adjusted as the sliding
window proceeds down the coverage file. This results in a GC factor file
that has a coverage ratio associated with each GC-content bin,
corresponding to the percent of bases within a given sliding window
region that are either G or C. The size of the GC-content bins can be
adjusted using the gc.step
parameter (default = 0.01), but
the value must tile the interval of 0 to 1.
So long as this column scheme is followed, a user can also provide
their own GC factor file using the file.gc.factor
argument.
A smaller bin size may result in more finely-tuned bias correction at
the cost of increased time to calculate the factor files.
In the next step, we will estimate the expected “normal” karyotype
range (NKR) for each feature in the annotation file. This will be used
downstream to determine scores for features that exceed their respective
features’ NKR. This is similar to defining a confidence interval for the
coverage, however it is centered around the mode-normalized median
coverage across all samples in the analysis. Please note that the region
analyzed is strictly where the coverage file and annotation file overlap
- any regions in the coverage file that are not included within the
range of a feature in the annotation file will not be
analyzed. The ratio of coverage compared to the median is summarized in
the file passed as the norm.cov.matrix
argument. The
normalized coverage ratio matrix will be generated if the file specified
does not exist. Additionally, the nkr
parameter is a
quantile that defines what is considered as the “normal.” This is
considered similar to an alpha value when using bootstrapped confidence
intervals. Below is an example of how one would execute this function.
For this example, we have already specified the desired path of
norm.cov.matrix
, as well as the value for nkr
(default = 0.9).
This step can be accomplished by using the estimate_nkr
function.
nkr.res <- estimate_nkr(new.obj)
#> Importing coverage matrix from previous run
#> NKR estimation succeeded!
nkr.res
#> An object of class "RCNA_analysis"
#> Slot "call":
#> [1] "estimate_nkr"
#>
#> Slot "params":
#> $nkrParams
#> file.nkr.coverage x.norm sample.names
#> 1 output/gc/sample-0001.corrected.txt.gz FALSE sample-0001
#> 2 output/gc/sample-0002.corrected.txt.gz FALSE sample-0002
#> 3 output/gc/sample-0003.corrected.txt.gz FALSE sample-0003
#> 4 output/gc/sample-0004.corrected.txt.gz FALSE sample-0004
#> 5 output/gc/sample-0005.corrected.txt.gz FALSE sample-0005
#> 6 output/gc/sample-0006.corrected.txt.gz FALSE sample-0006
#> 7 output/gc/sample-0007.corrected.txt.gz FALSE sample-0007
#> 8 output/gc/sample-0008.corrected.txt.gz FALSE sample-0008
#> 9 output/gc/sample-0009.corrected.txt.gz FALSE sample-0009
#> 10 output/gc/sample-0010.corrected.txt.gz FALSE sample-0010
#>
#> $nkr
#> [1] 0.9
#>
#> $cov.ratios
#> [1] "output/norm-cov-matrix.csv.gz"
#>
#>
#> Slot "res.files":
#> $Output
#> [1] "ALAS2.RData" "SRSF2.RData"
#>
#> $`Normalized coverage ratios`
#> [1] "output/norm-cov-matrix.csv.gz"
new.obj@commands[[3]] <- nkr.res
The resulting .RData
files (found in
output/nkr/
) contain R workspace objects which define the
normal karyotype ranges on each feature in the annotation file. There
should be one file per feature. We can load one and inspect the contents
if we so wish. Let’s also take a look at the normalized coverage matrix
too.
load(file.path("output", "nkr", nkr.res@res.files$Output[1]))
head(res$raw)
#> sample-0001 sample-0002 sample-0003 sample-0004 sample-0005 sample-0006 sample-0007 sample-0008 sample-0009 sample-0010
#> ALAS2_chrX_55009180 -0.4712177 0.3079704 -0.5489125 -0.4938741 -0.07685428 -0.6372187 0.06688500 0.05838189 0.8210937 0.1710256
#> ALAS2_chrX_55009181 -0.5421495 0.3375313 -0.5301404 -0.4759917 -0.04093790 -0.5775500 0.05953157 0.02246552 0.8261610 0.2160292
#> ALAS2_chrX_55009182 -0.5991689 0.2725962 -0.5727809 -0.5267949 -0.06078825 -0.5995822 0.02852741 0.06799289 0.8366352 0.1749022
#> ALAS2_chrX_55009183 -0.5206929 0.3876275 -0.4933843 -0.4266533 -0.07423166 -0.5755403 0.04197082 0.07797758 0.8431989 0.2068355
#> ALAS2_chrX_55009184 -0.5002292 0.3359176 -0.6075949 -0.5254258 -0.10150053 -0.5629351 0.06923969 0.10888241 0.8308551 0.2418197
#> ALAS2_chrX_55009185 -0.5282313 0.2823252 -0.5591150 -0.5149572 -0.05550205 -0.5885885 0.09700744 0.03702967 0.8127750 0.1673071
norm.cov.mat = read.csv(nkr.res@res.files$`Normalized coverage ratios`, stringsAsFactors = FALSE)
head(norm.cov.mat)
#> sample.0001 sample.0002 sample.0003 sample.0004 sample.0005 sample.0006 sample.0007 sample.0008 sample.0009 sample.0010
#> _chr1_1787331 0.09619511 0.034520150 -0.2518999 -0.0409949001 -0.07862110 0.10284579 0.02632270 -0.1125486 0.10600302 -0.1263846
#> _chr1_1787332 0.07800200 0.014416556 -0.1484041 -0.0233834615 -0.14537101 0.05658341 0.01301504 -0.2154538 0.07562834 -0.1691862
#> _chr1_1787333 0.09349493 0.054155189 -0.1638869 0.0031294940 -0.04512092 0.10563155 -0.01780169 -0.1404977 0.17946723 -0.1549712
#> _chr1_1787334 0.02663941 0.035837190 -0.2692994 0.0210334554 -0.05555740 0.04344290 -0.03570566 -0.2147050 0.07125268 -0.1644438
#> _chr1_1787335 0.12655848 0.039913718 -0.2052132 0.0009800749 -0.10926807 0.06087082 -0.01565227 -0.1498817 0.15122988 -0.1489632
#> _chr1_1787336 0.08408666 0.006827653 -0.2353454 -0.0157945579 -0.06202690 0.09588569 0.01166820 -0.2026655 0.13805799 -0.1346327
We can see that the raw
attribute from the feature file
lines up to the rows of the normalized coverage matrix that contain that
feature. Both of these represent the normalized coverage at that
location (found in the rows) for each sample (found in the column
names). We can inspect the estimate_nkr
results further to
find the mode-normalized median coverage and the bounds on the normal
karyotype range.
head(res$val.pos) # median coverage across ALL samples
#> [1] -0.009236 -0.009236 -0.016130 -0.016130 -0.016130 -0.009236
head(res$uci.pos) # NKR upper bound
#> [1] 0.590188 0.606278 0.582818 0.638192 0.608133 0.574073
head(res$lci.pos) # NKR lower bound
#> [1] -0.597481 -0.561620 -0.599396 -0.550859 -0.587498 -0.575325
In the final step of the workflow we estimate the CNA score of a
feature by calculating what percentage of the feature lands above the
upper bound calculated in the previous step. This step outputs two files
- one with all results and one with only the results
that pass a score cutoff filter specified by the
score.cutoff
parameter(s) (default = 0.5). This parameter
is important for removing false positives, and as seen in the original
manuscript may require fine tuning to achieve an acceptable Type I error
rate.
This step can be accomplished by using the
estimate_feature_score
function.
score.res <- estimate_feature_score(new.obj)
#> Feature score estimation succeeded!
score.res
#> An object of class "RCNA_analysis"
#> Slot "call":
#> [1] "estimate_feature_score"
#>
#> Slot "params":
#> $scoreParams
#> file.score.coverage sample.names
#> 1 output/gc/sample-0001.corrected.txt.gz sample-0001
#> 2 output/gc/sample-0002.corrected.txt.gz sample-0002
#> 3 output/gc/sample-0003.corrected.txt.gz sample-0003
#> 4 output/gc/sample-0004.corrected.txt.gz sample-0004
#> 5 output/gc/sample-0005.corrected.txt.gz sample-0005
#> 6 output/gc/sample-0006.corrected.txt.gz sample-0006
#> 7 output/gc/sample-0007.corrected.txt.gz sample-0007
#> 8 output/gc/sample-0008.corrected.txt.gz sample-0008
#> 9 output/gc/sample-0009.corrected.txt.gz sample-0009
#> 10 output/gc/sample-0010.corrected.txt.gz sample-0010
#>
#> $low.score.cutoff
#> [1] -0.5
#>
#> $high.score.cutoff
#> [1] 0.5
#>
#>
#> Slot "res.files":
#> $Output
#> [1] "RCNA-output-scorepass.csv" "RCNA-output.csv"
new.obj@commands[[4]] <- score.res
Let’s inspect the final results to get a better understanding of what they mean.
out.pass <- read.csv(file.path(new.obj@out.dir, "score", score.res@res.files$Output[[1]]), header = T, stringsAsFactors = F)
out.all <- read.csv(file.path(new.obj@out.dir, "score", score.res@res.files$Output[[2]]), header = T, stringsAsFactors = F)
out.all
#> Sample.Name Feature Chromosome Feature.Start.Position Feature.End.Position Score Percent.Above.NKR Percent.Below.NKR Median.Normalized.log2.Ratio Feature.Positions
#> 1 sample-0001 ALAS2 chrX 55009055 55031064 -0.0937 0.00 9.37 -0.6073 1836
#> 2 sample-0002 ALAS2 chrX 55009055 55031064 0.0005 0.05 0.00 0.3021 1836
#> 3 sample-0003 ALAS2 chrX 55009055 55031064 -0.7702 0.00 77.02 -0.6852 1836
#> 4 sample-0004 ALAS2 chrX 55009055 55031064 -0.0223 0.00 2.23 -0.5378 1836
#> 5 sample-0005 ALAS2 chrX 55009055 55031064 0.0033 0.33 0.00 -0.0006 1836
#> 6 sample-0006 ALAS2 chrX 55009055 55031064 -0.1138 0.00 11.38 -0.5437 1836
#> 7 sample-0007 ALAS2 chrX 55009055 55031064 0.0000 0.00 0.00 -0.0116 1836
#> 8 sample-0008 ALAS2 chrX 55009055 55031064 0.0000 0.00 0.00 0.0576 1836
#> 9 sample-0009 ALAS2 chrX 55009055 55031064 0.9553 95.53 0.00 0.6512 1836
#> 10 sample-0010 ALAS2 chrX 55009055 55031064 0.0408 4.08 0.00 0.2703 1836
#> 11 sample-0001 SRSF2 chr17 76734115 76737374 0.0616 6.16 0.00 0.0292 666
#> 12 sample-0002 SRSF2 chr17 76734115 76737374 0.4715 50.45 3.30 0.0979 666
#> 13 sample-0003 SRSF2 chr17 76734115 76737374 0.1291 12.91 0.00 0.0235 666
#> 14 sample-0004 SRSF2 chr17 76734115 76737374 0.1081 10.81 0.00 0.0157 666
#> 15 sample-0005 SRSF2 chr17 76734115 76737374 -0.7553 1.20 76.73 -0.2732 666
#> 16 sample-0006 SRSF2 chr17 76734115 76737374 0.0000 0.30 0.30 -0.0132 666
#> 17 sample-0007 SRSF2 chr17 76734115 76737374 -0.0841 0.15 8.56 -0.1064 666
#> 18 sample-0008 SRSF2 chr17 76734115 76737374 0.0060 1.05 0.45 -0.1035 666
#> 19 sample-0009 SRSF2 chr17 76734115 76737374 0.0165 3.30 1.65 0.0083 666
#> 20 sample-0010 SRSF2 chr17 76734115 76737374 0.0465 13.66 9.01 0.0574 666
A score above 0 represents a feature that was detected to have a copy
number gain, while a negative score represents a feature detected to
have a copy number loss. The Percent.Above.NKR
and
Percent.Below.NKR
fields represent which parts of the
feature exhibit coverage that exceed the normal karyotype range. The
last column represents the number of base pairs in the feature.
All of these functions can be ran in sequence by using the
run_RCNA
function included for convenience. It has a simple
purpose - to run all three steps and return the input S4 object with the
resulting RCNA_analysis
objects attached to the
commands
slot. This function will always append the most
recent RCNA_analysis
object to the end of the commands
slot, so multiple runs will have the full history if you use the same S4
object.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.