The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: QTL Hotspot Detection
Version: 0.1.0
Author: ManHsia Yang
Maintainer: ManHsia Yang <ymh@tari.gov.tw>
Description: This function produces both the numerical and graphical summaries of the QTL hotspot detection in the genomes that are available on the worldwide web including the flanking markers of QTLs.
License: GPL (≥ 3)
Encoding: UTF-8
LazyData: true
RoxygenNote: 6.1.1
NeedsCompilation: no
Packaged: 2019-01-04 06:23:23 UTC; ymh
Repository: CRAN
Date/Publication: 2019-01-08 17:40:05 UTC

QTL Hotspot Detection

Description

This function produces both the numerical and graphical summaries of the QTL hotspot detection in the genomes that are available on the worldwide web including the flanking markers of QTLs. Man-Hsia Yang, Dong-Hong Wu, Chen-Hung Kao. 2019. A Statistical Procedure for Genome-wide Detection of QTL Hotspots Using Public Databases with Application to Rice. G3-Genes Genom Genet DOI: 10.1534/g3.118.200922.

Usage

QHOT(DataQTL, DataCrop, ScanStep, NH, NP)

Arguments

DataQTL

a data-frame of values for QTL information including the trait names, which chromosomes localized, the left and right flanking marker positions of QTLs for the first to fourth columns, respectively.

DataCrop

a data-frame of values for chromosome information consisting of the names, center positions and lengths of chromosomes for the first to third columns, respectively.

ScanStep

a value for the length of every bin.

NH

a value for the number of spurious hotspots in the proposed method.

NP

a value for permutation times to calculate the threshold.

References

Man-Hsia Yang, Dong-Hong Wu, Chen-Hung Kao. 2019. A Statistical Procedure for Genome-wide Detection of QTL Hotspots Using Public Databases with Application to Rice. G3-Genes Genom Genet DOI: 10.1534/g3.118.200922.

Examples

Trait<-paste("t",sample(1:9,100,replace=TRUE,prob=c(2,rep(1,8))/10),sep="")
chr<-1
L<-sample(seq(0,90,by=10),100,replace=TRUE,prob=c(0.5,0.5,5.5,rep(0.5,7))/10)
R<-L+sample(c(0.5,1,5,10,50),100,replace=TRUE)
R[R>100]<-100
DataQTL.t<-data.frame(Trait,chr,L,R)
DataCrop.t<-data.frame(chr=1,center=75,length=100)
QHOT(DataQTL.t, DataCrop.t, ScanStep=0.5, NH=1, NP=1000)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.