The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(PriorGen)
## Loading required package: rootSolve
## Loading required package: nleqslv
findbeta(themedian = 0.5,lower.v = T,percentile = 0.999,percentile.value = 0.999)
## $parameters
## a b
## 1 1
##
## $summary
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0005798 0.2548675 0.5011664 0.5009285 0.7471612 0.9999125
##
## $input
## themedian percentile percentile.value
## 0.500 0.999 0.999
##
## attr(,"class")
## [1] "PriorGen"
#findbeta(themode = 0.5,lower.v = T,percentile = 0.80,percentile.value = 0.95)
=findbeta(themean = 0.5,lower.v = T,percentile = 0.90,percentile.value = 0.95)
fb_per$parameters fb_per
## a b
## 0.6658199 0.6658199
$summary fb_per
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000004 0.1923723 0.4975507 0.4977591 0.8030204 0.9999862
$input fb_per
## themean percentile percentile.value
## 0.50 0.90 0.95
print_PriorGen(fb_per)
## [1] "The desired Beta distribution that satisfies the specified conditions is: Beta(0.67,0.67). Verification: The percentile value 0.95 corresponds to the 90th percentile"
library(PriorGen)
findbeta_raw(themedian = 0.5,therange = c(0,1))
## $parameters
## a b
## 1 1
##
## $summary
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000875 0.2528388 0.4988336 0.4990715 0.7451325 0.9994202
##
## $input
## themedian scalemetric_var_or_range
## 0.5 1.0
##
## attr(,"class")
## [1] "PriorGen"
#findbeta_raw(themode = 0.5,therange = c(0,1))
=findbeta_raw(themean = 0.8,thevariance = 0.2)
fb_raw$parameters fb_raw
## a b
## 5.157879 1.289470
$summary fb_raw
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1156 0.7171 0.8315 0.8004 0.9130 0.9997
$input fb_raw
## themean scalemetric_var_or_range
## 0.8000000 0.0408861
library(PriorGen)
findbeta_abstract(themean.cat = "Low",thevariance.cat = "High")
## $parameters
## a b
## 2.136044 4.984102
##
## $summary
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.004837 0.178582 0.281257 0.301772 0.404865 0.869466
##
## $input
## themean scalemetric percentile.value
## 0.3000 0.1075 0.9990
##
## attr(,"class")
## [1] "PriorGen"
#findbeta_abstract(themean.cat = "Very low",thevariance.cat = "Low")
=findbeta_abstract(themean.cat = "Low",thevariance.cat = "High")
fb_abstract$parameters fb_abstract
## a b
## 2.136044 4.984102
$summary fb_abstract
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.004837 0.178582 0.281257 0.301772 0.404865 0.869466
$input fb_abstract
## themean scalemetric percentile.value
## 0.3000 0.1075 0.9990
library(PriorGen)
#findbeta_panel(themedian.vec = c(0.2,0.02,0.5,0.03,0.04,0.05))
findbeta_panel(themode.vec = c(0.2,0.02,0.5,0.03,0.04,0.05))
## $parameters
## a b
## 4.570939 22.935768
##
## $summary
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.01882 0.11591 0.15828 0.16678 0.20848 0.51874
##
## $input
## themode percentile scalevalue percentile.value
## 0.1400 0.9999 0.4800 0.4990
##
## attr(,"class")
## [1] "PriorGen"
=findbeta_panel(themean.vec = c(0.2,0.02,0.5,0.03,0.04,0.05))
fb_panel$parameters fb_panel
## a b
## 11.90200 73.11232
$summary fb_panel
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.04516 0.11378 0.13739 0.14026 0.16347 0.30894
$input fb_panel
## themean percentile scalevalue percentile.value
## 0.1400000 0.9999000 0.0355600 0.2773494
library(PriorGen)
=findbetaqq(percentile.value1 = 0.3,percentile1 = 0.20,
fb_qqpercentile.value2 = 0.7,percentile2 = 0.97)
$parameters fb_qq
## a b
## 4.754100 6.398365
$summary fb_qq
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.06502 0.32446 0.42170 0.42666 0.52329 0.89435
$input fb_qq
## percentile.value1 percentile1 percentile.value2 percentile2
## 0.30 0.20 0.70 0.97
library(PriorGen)
=findbetamupsi(themean=0.20, percentile=0.99, lower.v=TRUE,
fb_mupsi_RSpercentile.value=0.30, psi.percentile=0.90,
percentile.median=0.60, percentile95value=0.80,root.method="multiroot")
$parameters fb_mupsi_RS
## NULL
$summary fb_mupsi_RS
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000000 0.008379 0.085610 0.203784 0.320677 0.999995
$input fb_mupsi_RS
## themean percentile percentile.value psi.percentile
## 0.20 0.99 0.30 0.90
## percentile.median percentile95value
## 0.60 0.80
=findbetamupsi(themean=0.20, percentile=0.99, lower.v=TRUE,
fb_mupsi_NLpercentile.value=0.30, psi.percentile=0.90,
percentile.median=0.60, percentile95value=0.80,root.method="nleqslv")
$parameters fb_mupsi_RS
## NULL
$parameters fb_mupsi_NL
## NULL
# Results are similar
library(PriorGen)
=findbetamupsi_raw(themean=0.20,thevariance = 0.05, thepsi=0.15)
fb_mupsi_raw$parameters fb_mupsi_raw
## NULL
$summary fb_mupsi_raw
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000000 0.0000000 0.0000103 0.1935947 0.1337335 1.0000000
$input fb_mupsi_raw
## themean thevariances percentile percentile.value
## 0.2000000 0.0500000 0.9999000 0.3645263
## thepsi
## 0.1500000
library(PriorGen)
=findbetamupsi_abstract(themean="Average",thevariance = "Very high",
fb_mupsi_abstractpsi.percentile=0.90,percentile.median=0.999,
percentile95value=0.9999)
$parameters fb_mupsi_abstract
## NULL
$summary fb_mupsi_abstract
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00000 0.05677 0.64303 0.54865 0.99077 1.00000
$input fb_mupsi_abstract
## themean percentile percentile.value psi.percentile
## 0.5500000 0.9999000 0.9974181 0.9000000
## percentile.median percentile95value
## 0.9990000 0.9999000
library(PriorGen)
=findbetamupsi_panel(themean=c(0.1,0.5,0.6,0.3,0.05,0.01,0.3),
fb_mupsi_panelpsi.percentile=0.90, percentile.median=0.50,
percentile95value=0.60)
$parameters fb_mupsi_panel
## NULL
$summary fb_mupsi_panel
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000001 0.1293974 0.2387243 0.2681315 0.3763673 0.9607058
$input fb_mupsi_panel
## themean percentile percentile.value psi.percentile
## 0.2657143 0.9999000 0.4656722 0.9000000
## percentile.median percentile95value
## 0.5000000 0.6000000
library(PriorGen)
=findbeta(themean = 0.5,lower.v = T,percentile = 0.999,percentile.value = 0.999)
fb_prplot(fb_pr,main="Elicited beta prior \n(Percentile)",ylab = "Density",lwd=3,type="l",xlab="")
# Plot for finbeta_raw
library(PriorGen)
=findbeta_raw(themean = 0.5,thevariance = 0.5)
fb_rawplot(fb_raw,main="Elicited beta prior \n(Raw)",ylab = "Density",lwd=3,type="l",xlab="")
# Plot for findbeta_abstract
library(PriorGen)
=findbeta_abstract(themean.cat = "Low",thevariance.cat = "High")
fb_abstractplot(fb_abstract,main="Elicited beta prior \n(Abstract)",ylab = "Density",lwd=3,type="l",xlab="")
library(PriorGen)
=findbeta_panel(themean.vec = c(0.2,0.02,0.5,0.03,0.04,0.05))
fb_panel1=findbeta_panel(themean.vec = c(0.2,0.02,0.5,0.4,0.04,0.05))
fb_panel2plot(fb_panel1,main="Elicited beta prior \n(Panel)",ylab = "Density",lwd=3,type="l",xlab="")
lines(fb_panel2,lwd=3,type="l",lty=2)
legend("topright",c("Panel 1", "Panel 2"),lty = c(1,2),lwd=3)
library(PriorGen)
=findbetaqq(percentile.value1 = 0.3,percentile1 = 0.20,
fb_qqpercentile.value2 = 0.7,percentile2 = 0.97)
plot(fb_qq,main="Elicited beta prior \n(Percentiles method)",ylab = "Density",lwd=3,type="l",xlab="")
library(PriorGen)
=findbetamupsi(themean=0.20, percentile=0.99, lower.v=TRUE,
fb_mupsipercentile.value=0.30, psi.percentile=0.90,
percentile.median=0.50, percentile95value=0.60)
#par(mfrow=c(1,3))
#plot(density(fb_mupsi$param_upper$at),lwd=3,main="Density plot for samples of a=mu*psi") #
#plot(density(fb_mupsi$param_upper$bt),lwd=3,main="Density plot for samples of b=mu*(1-psi)") #
plot(fb_mupsi,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",xlab="")
=findbetamupsi(themean=0.30, percentile=0.8, lower.v=TRUE,
fb_mupsi1percentile.value=0.30, psi.percentile=0.90,
percentile.median=0.70, percentile95value=0.80)
lines(fb_mupsi1,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",lty=2,col="gray")
legend("topright",c("Basic","Basic1"),col=c("black","gray"),lty=1:2,lwd=3)
library(PriorGen)
=findbetamupsi_raw(themean=0.20, thevariance = 0.1, thepsi=0.15)
fb_mupsi_raw#par(mfrow=c(1,3))
#plot(density(fb_mupsi_abstract$param_upper$at),lwd=3,main="Density plot for samples of a=mu*psi") #
#plot(density(fb_mupsi_abstract$param_upper$bt),lwd=3,main="Density plot for samples of b=mu*(1-psi)") #
plot(fb_mupsi_raw,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",xlab="")
=findbetamupsi_raw(themean=0.30, thevariance = 0.15, thepsi=0.15)
fb_mupsi_raw1lines(fb_mupsi_raw1,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",lty=2,col="gray")
legend("topright",c("Raw","Raw1"),col=c("black","gray"),lty=1:2,lwd=3)
library(PriorGen)
=findbetamupsi_abstract(themean="Low", thevariance = "High",
fb_mupsi_abstractpsi.percentile=0.90, percentile.median=0.95, percentile95value=0.98)
#par(mfrow=c(1,3))
#plot(density(fb_mupsi_abstract$param_upper$at),lwd=3,main="Density plot for samples of a=mu*psi") #
#plot(density(fb_mupsi_abstract$param_upper$bt),lwd=3,main="Density plot for samples of b=mu*(1-psi)") #
plot(fb_mupsi_abstract,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",xlab="")
=findbetamupsi_abstract(themean="Very low", thevariance = "Average",
fb_mupsi_abstract1psi.percentile=0.90,percentile.median=0.95,
percentile95value=0.98)
lines(fb_mupsi_abstract1,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",lty=2,col="gray")
legend("topright",c("Abstract","Abstract1"),col=c("black","gray"),lty=1:2,lwd=3)
library(PriorGen)
=findbetamupsi_panel(themean=c(0.1,0.5,0.05,0.01,0.4,0.2), psi.percentile=0.90,
fb_mupsi_panelpercentile.median=0.50, percentile95value=0.60)
#par(mfrow=c(1,3))
#plot(density(fb_mupsi_panel$param_upper$at),lwd=3,main="Density plot for samples of a=mu*psi") #
#plot(density(fb_mupsi_panel$param_upper$bt),lwd=3,main="Density plot for samples of b=mu*(1-psi)") #
plot(fb_mupsi_panel,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",xlab="")
=findbetamupsi_panel(themean=c(0.1,0.5,0.05,0.01,0.6,0.65), psi.percentile=0.90,
fb_mupsi_panel1percentile.median=0.80, percentile95value=0.90)
lines(fb_mupsi_panel1,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",lty=2,col="gray")
legend("topright",c("Panel","Panel1"),col=c("black","gray"),lty=1:2,lwd=3)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.